向量的点积,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。
设有两个向量:
则它们的点积为:
可以表示为: X . Y
1) 坐标点到原点的距离公式为:
sqrt( X1^2 + X2^2 + .... + Xn^2)
所以可以采用向量点积表示: sqrt( V. V),也就是等于向量与自己本身的点积再开根号。因此在图形学里,计算坐标点到原点的距离,就采用计算点积开根号。
2)三维空间座标两点间距离公式:
记A(x1,y1,z1),B(x2,y2,z2),则A,B之间的距离为
d=√[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]
所以两点之间的距离可以使用向量表示为:
设置点P, Q,那么距离等于 向量Q - P的长度,也就是等于sqrt( (Q-P). (Q-P))。
3)点积可以表示向量夹角:
点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。
根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为:
a·b>0 方向基本相同,夹角在0°到90°之间
a·b=0 正交,相互垂直
a·b<0 方向基本相反,夹角在90°到180°之间