为什么计算机图形学里要使用点积?

向量的点积,也叫向量的内积、数量积,对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,点乘的结果是一个标量。

设有两个向量:


则它们的点积为:


可以表示为: X . Y 

1)  坐标点到原点的距离公式为:

sqrt( X1^2  + X2^2 + .... + Xn^2)

所以可以采用向量点积表示: sqrt( V. V),也就是等于向量与自己本身的点积再开根号。因此在图形学里,计算坐标点到原点的距离,就采用计算点积开根号。


2)三维空间座标两点间距离公式: 

记A(x1,y1,z1),B(x2,y2,z2),则A,B之间的距离为 
d=√[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]

所以两点之间的距离可以使用向量表示为:

设置点P, Q,那么距离等于 向量Q - P的长度,也就是等于sqrt( (Q-P). (Q-P))。


3)点积可以表示向量夹角:


点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影。

根据这个公式就可以计算向量a和向量b之间的夹角。从而就可以进一步判断这两个向量是否是同一方向,是否正交(也就是垂直)等方向关系,具体对应关系为:


     a·b>0    方向基本相同,夹角在0°到90°之间
     a·b=0    正交,相互垂直  
     a·b<0    方向基本相反,夹角在90°到180°之间 


1. C++标准模板库从入门到精通 

2.跟老菜鸟学C++

3. 跟老菜鸟学python

4. 在VC2015里学会使用tinyxml库

5. 在Windows下SVN的版本管理与实战 

 http://edu.csdn.net/course/detail/2579

6.Visual Studio 2015开发C++程序的基本使用 

http://edu.csdn.net/course/detail/2570

7.在VC2015里使用protobuf协议

8.在VC2015里学会使用MySQL数据库



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

caimouse

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值