前言
最近在学习Spark,除了原生的Scala以外,Spark还提供了一个pyspark支持Python。以前曾经搭过一个基于IPython notebook的在线代码运行平台,其中用到的numpy,scipy,matplotlib,pandas等文本/数据处理库让我觉得如果能和pyspark结合说不定是个不错的组合——可以直观的测试代码逻辑,比起shell不知道要高到哪里去了。
至于这个平台,你可以搭载在树莓派,阿里云ecs,甚至是本机架设,方便快捷简单易上手。
事实上对于这篇文章,你也可以单纯把它看作是单机布置伪分布式Spark的教程,因为前面步骤一样一样的。
前期准备
硬件:
Linux/Mac计算机 x1
Linux用Ubuntu作为示例,Mac默认有HomeBrew或者Macport
软件:
Java环境,配置过JAVA_HOME
Python环境,默认为Python2
需联网,没有网络的请自行下载源码包并上传至机器
下载
Spark:
前往Apache官网下载:
- hadoop2.6.0.tar.gz
- spark-1.6.1-bin-hadoop2.6.tar.gz
- scala-2.10.6.tar.gz
下载并统一使用
tar xvzf XXX.tar.gz
进行解压,之后执行
$mv hadoop2.6.0 /usr/local/hadoop
$mv spark-1.6.1-bin-hadoop2.6 /usr/local/spark
$mv scala-2.10.6 /usr/lcoal/scala
将文件夹移动到/usr/local备用
IPython:
之前用的Ipython notebook已经独立出来变成了jupyter,在这个步骤Python首先要安装setuptools,之后执行
$easy_install pip virtualenv
Virtualenv是Python的一个沙盒环境,适合配置不同版本的库来适配不同应用。
之后用Virtualenv创建一个IPython ENV
$cd /your/IPython/path/
$virtualenv ipython
$source ipython/bin/activate
(ipython)$
当前缀出现(ipython)的时候,说明这个env已经创建成功并正在