粒子平滑器

在寻求平滑方法解决非线性或非高斯问题时,利用高斯逼近方法可能无法得到足够精确的逼近解。此时,最佳的解决办法是采用蒙特卡洛(粒子)逼近。
本文中一些内容是在粒子滤波基础而来,如有不懂,可参考。

SIR粒子平滑器

SIR粒子平滑器直接将SIR算法应用于平滑。
即:基于直接序列重要性重采样的平滑方法
⋅ \bm{\cdot} 从先验分布中抽取 N \bm{N} N 个采样点 x 0 ( i ) \bm{x_0^{(i)}} x0(i)在这里插入图片描述式中:对所有的 i = 1 , 2 , ⋅ ⋅ ⋅ , N \bm{i=1,2,\cdot\cdot\cdot,N} i=1,2,,N,有 w 0 ( i ) = 1 / N \bm{w_0^{(i)}=1/N} w0(i)=1/N。对过去状态量进行初始化包含先验分布采样的 x 0 ( i ) \bm{x_0^{(i)}} x0(i)
⋅ \bm{\cdot} 对每个时刻 k = 1 , 2 , ⋅ ⋅ ⋅ , T \bm{k=1,2,\cdot\cdot\cdot,T} k=1,2,,T,执行如下步骤:
1). 从重要性分布中抽取 N \bm{N} N 个新的采样点 x k ( i ) \bm{x_k^{(i)}} xk(i):
在这里插入图片描述2). 计算新的权值:
在这里插入图片描述并将其权值归一化处理。
3). 将过去的所有状态和当前状态包含进状态集中:
在这里插入图片描述4). 根据下式,若有效粒子数过少,则对过去的所有状态执行重采样。
在这里插入图片描述式中,的 w k ( i ) \bm{w_k^{(i)}} wk(i),为归一化权值。

后向模拟粒子平滑器

SIR粒子平滑器只是存储过去的粒子数据,有较严重的平滑器退化问题。后向模拟粒子平滑器通过重新利用滤波结果得以有效缓解。

**后向模拟粒子平滑器:**已知粒子及其权值集合:在这里插入图片描述执行以下步骤可以计算出滤波分布:
⋅ \bm{\cdot} x ~ T = x T ( i ) \bm{\widetilde x_T=x_T^{(i)}} x T=xT(i),且其权值为 w T ( i ) \bm{w_T^{(i)}} wT(i)
⋅ \bm{\cdot} 对于 k = T − 1 , ⋅ ⋅ ⋅ , 0 \bm{k=T-1,\cdot\cdot\cdot,0} k=T1,0:
1). 通过下式计算新权值:
在这里插入图片描述
2). 记 x ~ k = x k ( i ) \bm{\widetilde x_k = x_k^{(i)}} x k=xk(i),且其权值为 w k ( i ) \bm{w_k^{(i)}} wk(i)

重复 S \bm{S} S 次上述算法,即对于 j = 1 , 2 , ⋅ ⋅ ⋅ , S , \bm{j=1,2,\cdot\cdot\cdot,S,} j=1,2,,S, 分别得到样本轨迹 x ~ 0 : T ( j ) \bm{\widetilde x_{0:T}^{(j)}} x 0:T(j),故平滑分布逼近为:
在这里插入图片描述 k \bm{k} k 时刻的边缘分布采用可以通过提取上述轨迹的第 k \bm{k} k 个元素精确获得。

重新加权平滑滤波

重新加权粒子滤波,也称为边缘粒子滤波,通过计算SIR粒子的新权值获得对平滑分布的逼近。

**重新加权粒子滤波器:**已知粒子及其权值的集合:
在这里插入图片描述可由如下步骤获得对边缘平滑的逼近:
⋅ \bm{\cdot} w ~ T ∣ T ( i ) = w T ( i ) \bm{\widetilde w_{T|T}^{(i)} =w_T^{(i)}} w TT(i)=wT(i),其中, i = 1 , 2 , ⋅ ⋅ ⋅ , N \bm{i=1,2,\cdot\cdot\cdot,N} i=1,2,,N
⋅ \bm{\cdot} 对每一时刻 k = T − 1 , ⋅ ⋅ ⋅ , 0 \bm{k=T-1,\cdot\cdot\cdot,0} k=T1,,0,分别计算新权值:
在这里插入图片描述在每一时刻 k k k 的边缘平滑分布可近似为:
在这里插入图片描述

Rao-Blackwellized 粒子平滑器

Rao-Balckwellized粒子平滑器可用来计算如下高斯模型的平滑逼近:在这里插入图片描述相关参数说明见https://blog.csdn.net/calabash_man/article/details/105772283
该算法如下:
对于加权集合 { w T s , ( i ) , u 0 : T s , ( i ) , m 0 : T s , ( i ) , P 0 : T s , ( i ) : i = 1 , ⋅ ⋅ ⋅ , N } \bm{\{w_T^{s,(i)},u_{0:T}^{s,(i)},m_{0:T}^{s,(i)},P_{0:T}^{s,(i)}:i=1,\cdot\cdot\cdot,N\}} {wTs,(i),u0:Ts,(i),m0:Ts,(i),P0:Ts,(i):i=1,,N} ,可通过以下步骤计算其平滑分布:
1). 类似于SIR粒子平滑器,通过储存Rao-Blackwellized粒子滤波器的过去状态量,计算Rao-Blackwellized的加权集合:
{ w T ( i ) , u 0 : T ( i ) , m 0 : T ( i ) , P 0 : T ( i ) : i = 1 , ⋅ ⋅ ⋅ , N } \bm{\{w_T^{(i)},u_{0:T}^{(i)},m_{0:T}^{(i)},P_{0:T}^{(i)}:i=1,\cdot\cdot\cdot,N\}} {wT(i),u0:T(i),m0:T(i),P0:T(i):i=1,,N}2). 设
w T s , ( i ) = w T ( i ) u T s , ( i ) = u T ( i ) \bm{w_T^{s,(i)}=w_T^{(i)}} \\ \bm{u_T^{s,(i)}=u_T^{(i)}} wTs,(i)=wT(i)uTs,(i)=uT(i)3). 对过去状态 m 0 : T ( i ) , P 0 : T ( i ) ( i = 1 , ⋅ ⋅ ⋅ , N ) \bm{m_{0:T}^{(i)},P_{0:T}^{(i)}(i=1,\cdot\cdot\cdot,N)} m0:T(i),P0:T(i)(i=1,,N) 的所有均值和方差,利用RTS平滑器进行解算,的到平滑均值 m 0 : T s , ( i ) \bm{m_{0:T}^{s,(i)}} m0:Ts,(i)和方差 P 0 : T s , ( i ) \bm{P_{0:T}^{s,(i)}} P0:Ts,(i)

(本文为个人笔记,犹如错误,欢迎留言交流)

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值