【CodeForces553E】Kyoya and Train(DP+FFT+CDQ分治)

题目大意

给一个有向图,有一个人要从 1 1 1走到 n n n,第 i i i号边花费的钱为 c i c_i ci,花费的时间为 1 1 1~ T T T中随机的值,每种时间的概率为 p i , j p_{i,j} pi,j,如果这个人在 T T T时刻之后走到 n n n,就要交 X X X的罚款,求这个人花钱的最小期望。

题解

d p [ u ] [ t ] dp[u][t] dp[u][t]表示当前走到了u号结点,已经花费的时间为t,走到终点的最小期望代价。
d p [ u ] [ t ] = m i n { c [ u → v ] + ∑ k = 1 T d p [ v ] [ t + k ] × P [ u → v ] [ k ] } dp[u][t]=min \left\{ c[u\rightarrow v]+\sum_{k=1}^{T} dp[v][t+k]\times P[u\rightarrow v][k] \right\} dp[u][t]=min{c[uv]+k=1Tdp[v][t+k]×P[uv][k]}
可以发现如果将dp[v]翻转, ∑ k = 1 T d p [ v ] [ ( 2 T − t ) − k ] × P [ u → v ] [ k ] \sum_{k=1}^{T} dp[v][(2T-t)-k]\times P[u\rightarrow v][k] k=1Tdp[v][(2Tt)k]×P[uv][k],即成为卷积的形式,可以用FFT优化

然而这个图并不是有向无环图,直接用FFT优化dp实际上是有后效性的,一个结点可能会被多次更新DP。
但是仔细观察发现,把所有dp的状态拆出来,转移实际上不存在环(时间永远会增加),即时间小的状态一定由时间大的状态转移过来。
于是我们可以分段FFT,先计算一段时间大的,用它去更新时间小的,这就可以利用CDQ分治来完成。

一些细节:
初始值:dp[N][1~T]=0
如果dp[u][t]中t>T,则dp[u][t]=dis[u][n]+X(反正都迟到了,找一条最便宜的路慢慢走。。。)
所以,一开始每个点的T+1~2T部分都已被计算,可用这些先做FFT更新前面的答案。

用FFT计算出一次dp后,不能马上与原来的dp值取min更新(dp是求和,此时还没有把所有的和加进来),应再开一个数组存储当前计算后,累计的dp值的和为多少。

因为已经保证dp更新顺序由时间大的到时间小的状态,就不需要再管原图遍历的顺序了,计算dp时,直接枚举每一条边进行计算即可。

代码

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN=52,MAXM=105,MAXT=20005;
const double PI=acos(-1);

struct cpx
{
    double r,i;
    cpx(){}
    cpx(double a,double b):r(a),i(b){}
    cpx operator + (const cpx &t)const
    {return cpx(r+t.r,i+t.i);}
    cpx operator - (const cpx &t)const
    {return cpx(r-t.r,i-t.i);}
    cpx operator * (const cpx &t)const
    {return cpx(r*t.r-i*t.i,r*t.i+t.r*i);}
    cpx operator / (double k)const
    {return cpx(r/k,i/k);}
};

void FFT(cpx A[],int n,int mode)
{
    for(int i=0,j=0;i<n;i++)
    {
        if(i<j)
            swap(A[i],A[j]);
        int k=n>>1;
        while(k&j)
            j^=k,k>>=1;
        j^=k;
    }
    for(int i=1;i<n;i<<=1)
    {
        cpx w1=cpx(cos(PI/i*mode),sin(PI/i*mode)),w;
        for(int j=0;j<n;j+=(i<<1))
        {
            w=cpx(1,0);
            for(int l=j,r=j+i;l<j+i;l++,r++,w=w*w1)
            {
                cpx tmp=A[r]*w;
                A[r]=A[l]-tmp;
                A[l]=A[l]+tmp;
            }
        }
    }
    if(mode==-1)
        for(int i=0;i<n;i++)
            A[i]=A[i]/n;
}

int N,M,T,X;
int E[MAXM][3];
double P[MAXM][MAXT];

int dis[MAXN][MAXN];
double dp[MAXN][MAXT*2],S[MAXM][MAXT*2];

void DP(int L,int mid,int R)
{
    static cpx A[MAXT*10],B[MAXT*10];
    int t=min(T,R-L+1);
    for(int e=1;e<=M;e++)
    {
        int len=1;
        while(len<R-mid+t)
            len<<=1;
        for(int i=0;i<len;i++)
            A[i]=B[i]=cpx(0,0);
        for(int i=0;i<R-mid;i++)
            A[i]=cpx(dp[E[e][1]][R-i],0);//翻转
        for(int i=0;i<=t;i++)
            B[i]=cpx(P[e][i],0);
        FFT(A,len,1);
        FFT(B,len,1);
        for(int i=0;i<len;i++)
            A[i]=A[i]*B[i];
        FFT(A,len,-1);
        for(int i=L;i<=mid;i++)//用S记录当前转移累计的和
            S[e][i]+=A[R-i].r;
    }
}
void solve(int L,int R)
{
    if(L==R)
    {//L后面的时间已全部累计进入S,可以转移了
        for(int e=1;e<=M;e++)
            dp[E[e][0]][L]=min(dp[E[e][0]][L],S[e][L]+E[e][2]);
        return;
    }
    int mid=(L+R)/2;
    solve(mid+1,R);
    DP(L,mid,R);
    solve(L,mid);
}

int main()
{
    scanf("%d%d%d%d",&N,&M,&T,&X);
    for(int i=1;i<=N;i++)
    {
        for(int j=1;j<=N;j++)
            dis[i][j]=0x3F3F3F3F;
        dis[i][i]=0;
    }
    for(int i=1;i<=M;i++)
    {
        scanf("%d%d%d",&E[i][0],&E[i][1],&E[i][2]);
        dis[E[i][0]][E[i][1]]=min(dis[E[i][0]][E[i][1]],E[i][2]);
        for(int j=1;j<=T;j++)
        {
            scanf("%lf",&P[i][j]);
            P[i][j]/=100000.0;
        }
    }
	//Floyd求最便宜的路
    for(int k=1;k<=N;k++)
        for(int i=1;i<=N;i++)
            for(int j=1;j<=N;j++)
                dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
	//dp初始值
    for(int i=1;i<=N;i++)
        for(int j=0;j<=T;j++)
        {
            dp[i][j]=(i==N?0:1e100);
            dp[i][j+T]=X+dis[i][N];
        }
	//用T+1~2T的值更新0~T的值
    DP(0,T,2*T+1);
    //CDQ分治
    solve(0,T);

    printf("%.6f\n",dp[1][0]);

    return 0;
}
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值