大模型微调<LoRA>

PERT 方法的局限与挑战

  • Adapter方法,通过增加模型深度而额外增加了模型推理延时;
  • Prompt Tuning、Prefix Tuning、P-Tuning等方法中的提示较难训练,同时缩短了模型可用的序列长度;
  • 往往难以同时实现高效率和高质量,效果通常不及完全微调;
  • 简而言之,尽管大模型参数规模巨大,但关键作用通常是由其中的低秩本质维度发挥的;
    在这里插入图片描述

LoRA相比Adapter方法的优势

1、推理性能高效

  • 与Adapter方法相比,LoRA在推理阶段直接利用训练好的A、B低秩矩阵替换预训练模型的对应参数。这种替换避免了增加网络深度所带来的额外计算量和推理延时。
  • LoRA方法是的推理过程与全参数微调(full-finetuning)相似,但并不增加额外的计算负担。保持了高效的推理性能,同时实现了对模型的有效调整。

2、模拟全参数微调的效果

  • LoRA通过对模型关键部分的低秩调整,实际上模拟了全参数微调的过程。
  • 这种方法几乎不会导致训练效果的损失,后续实验结果也证明了这一点。
    综上所述,LoRA提供了一种在保持推理效率的同时,有效微调大型预训练模型的方法,特别适用于对推理速度和模型性能都有高要求的应用场景。

LoRA相比Soft Pr

### 大模型微调LoRA方法介绍 #### LoRA简介 在当前的大规模语言模型优化实践中,低秩适应(Low-Rank Adaptation, LoRA)作为一种高效的微调策略被广泛应用。这种方法特别适用于像StarCoder这样的大型预训练模型,在保持原有性能的同时显著减少额外参数量并降低计算成本[^1]。 #### LoRA工作原理 具体来说,对于基于Transformer架构构建的语言模型而言,LoRA旨在捕捉那些较大却相对简单的全连接层中的细微变动。通过引入一对矩阵A和B来近似表示这种变化,其中A代表输入维度到较低维空间的映射;而B则负责将此低维特征重新投影回原始输出尺寸。这种方式不仅能够有效压缩所需调整部分所占用的空间资源,而且有助于加速收敛过程以及提高泛化能力[^2]。 #### 关键配置项说明 当采用LoRA方案实施特定任务导向下的模型定制时,`target_modules`是一个至关重要的超参设定选项。它决定了哪些组件会被纳入局部更新范围内,默认情况下往往会选择涉及自注意力机制的核心单元作为重点改造对象,因为它们在整个网络结构里扮演着举足轻重的角色,并且其内部参数的变化可以直接影响最终预测效果的好坏[^3]。 ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], ) model = get_peft_model(model, lora_config) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值