https://arxiv.org/abs/1912.07443
首先,考虑神经网络输入PDE的时空坐标和其他的参数,输出PDE在该点的取值。
f
(
x
,
t
;
p
,
θ
)
f(x,t;p,\theta)
f(x,t;p,θ)
然后,用类似PINN的方式来求解这个模型,但是Loss不是建立在原方程而是方程的变分形式上。例如对于原方程为:
其变分形式为
但是这里并不像某篇工作(留空,暂时想不起来是哪篇了)一样另外用一个神经网络来学习v,而是使用了FEM中的局部的紧支撑的函数(这样引入的缺点是会有维数灾难)。
之后就是方程Loss+边值Loss+初值Loss进行训练即可。