VarNet: Variational Neural Networks for the Solution of Partial Differential Equations

该博客探讨了一种使用神经网络解决偏微分方程(PDE)的新方法。不同于传统的PINN(物理 informed neural networks),它基于PDE的变分形式,并结合有限元方法(FEM)中的局部紧支撑函数。这种方法避免了额外的神经网络来学习辅助变量,但可能面临维数灾难的问题。训练过程中,采用方程损失、边值损失和初值损失共同优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://arxiv.org/abs/1912.07443

首先,考虑神经网络输入PDE的时空坐标和其他的参数,输出PDE在该点的取值。
f ( x , t ; p , θ ) f(x,t;p,\theta) f(x,t;p,θ)

然后,用类似PINN的方式来求解这个模型,但是Loss不是建立在原方程而是方程的变分形式上。例如对于原方程为:
在这里插入图片描述
其变分形式为
在这里插入图片描述

但是这里并不像某篇工作(留空,暂时想不起来是哪篇了)一样另外用一个神经网络来学习v,而是使用了FEM中的局部的紧支撑的函数(这样引入的缺点是会有维数灾难)。
之后就是方程Loss+边值Loss+初值Loss进行训练即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值