CLIP算法的Loss详解 和 交叉熵CrossEntropy实现

本文详细探讨了CLIP(可对比语言-图像预训练)算法的Loss,并提供了交叉熵函数的实现,包括在PyTorch中的应用。通过对CLIP流程的介绍和源码分析,解释了如何计算损失并进行训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CLIP:Contrastive Language–Image Pre-training(可对比语言-图像预训练算法)是OpenAI提出的多模态预训练的算法,在各种各样的**样本对(图像、文本)**上训练的神经网络。

具体参考:CLIPOpenCLIP

image-20220601180224080

其中,流程:

image-20220601180639145

loss_iloss_t的具体源码如下,参考 model.py

    def forward
DPO (Deep Policy Optimization) 模型通常应用于强化学习领域,其中的优化过程涉及对策略网络(Policy Network)的学习。损失函数是用来衡量策略性能的一种度量,它指导了我们更新网络权重的方向。DPO 的优化损失函数主要包括两个部分: 1. **行为克隆损失 (Behavior Cloning Loss)**: 这部分目标是让模型尽可能地复制专家数据集中的行为,即模仿已有的最优行为。它是基于监督学习的,计算当前网络生成的动作分布与专家动作的一致性,通常用交叉熵作为损失。 行为克隆损失公式可以表示为: ``` L_bc = -\sum_{s \in S} log(\pi_\theta(a|s)) * r(s, a) ``` 其中 \(S\) 是状态空间,\(a\) 是动作,\(\pi_\theta\) 是由参数 \(\theta\) 定义的策略网络,\(r(s, a)\) 是从专家数据获得的奖励。 2. **优势估 计损失 (Advantage Estimation Loss)**: 为了鼓励探索未知的行为并防止过度依赖当前行为,DPO 引入了优势函数(Advantage),它量化了代理在一个状态下采取某个行动相对于其他所有可能行动的好坏。损失函数会最大化期望的累积优势而不是简单回报,这有助于长期决策质量。 优势估计损失一般使用 GAE (Generalized Advantage Estimation) 或者 clipped advantage estimation,例如: ``` L_clip = \mathbb{E}_{s, a, s'} [(A^{\pi_\theta}(s, a) - clip(A^{\pi_\theta}(s, a), -c, c))^2] ``` 其中 \(A^{\pi_\theta}\) 是优势函数,\(c\) 是剪切阈值。 DPO 算法会在每一步都结合这两个损失,并通过梯度下降来调整策略网络的参数 \(\theta\),使得网络更好地平衡模仿与探索。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值