Stable Diffusion - 采样器 DPM++ 3M SDE Karras 与 SDXL Refiner 测试

本文介绍了一种新的高阶求解器DPM-Solver++,专为扩散概率模型的引导采样设计,通过数据预测和阈值方法提升稳定性,能在低步数下生成高质量图像。对比DPM++3MSDEKarras,DPM-Solver++在引导采样上表现更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132978866

DPM

Paper: DPM-Solver++: Fast Solver for Guided Sampling of Diffusion Probabilistic Models

扩散概率模型(DPMs)在高分辨率图像合成方面,取得了令人印象深刻的成功,尤其是在最近的大规模文本到图像生成应用中。提高 DPMs 样本质量的一个重要技术是引导采样,通常需要一个较大的引导尺度来获得最佳的样本质量。引导采样常用的快速采样器是 DDIM,即一阶扩散 ODE 求解器,通常需要 100 到 250 步才能生成高质量的样本。
尽管最近的工作提出了专用的高阶求解器,并且在无引导采样方面实现了进一步的加速,但是对于引导采样的有效性还没有经过充分的测试。在这项工作中,证明之前的高阶快速采样器存在不稳定性问题,当引导尺度变大时,甚至比 DDIM 还要慢。
为了进一步加速引导采样,本文提出了 DPM-Solver++ ,用于 DPMs 引导采样的高阶求解器。DPM-Solver++ 使用数据预测模型来求解扩散 ODE,并且采用阈值方法来保证解与训练数据分布相匹配。因而,进一步提出多步变体的 DPM-Solver++,通过减小有效步长来解决不稳定性问题。实验表明,DPM-Solver++ 可以在只有15到20步的情况下,为像素空间和潜在空间的DPMs生成高质量的引导采样。

采样器 DPM++ 3M SDE Karras 是一种用于稳定扩散(Stable Diffusion)的采样方法,基于 DPM++ 2M Karras 的改进版本,具有以下特点:

  • DPM++ 是一种动态采样器,可以根据每一步的梯度信息自适应地调整采样步长和方向。
  • 3M 表示采样器使用了三种不同的扩散模式(Diffusion Modes),分别是标准扩散(Standard Diffusion)、反向扩散(Reverse Diffusion)和交替扩散(Alternating Diffusion)。
  • SDE 表示采样器使用了随机微分方程(Stochastic Differential Equation)来模拟扩散过程。
  • Karras 表示采样器使用 Karras 等人提出的一种高效的随机数生成方法,可以减少计算量和内存消耗。

采样器 DPM++ 3M SDE Karras 的优点是可以在较低的步数和CFG值下生成高质量的图像,并且可以适应不同的模型和VAE。缺点是可能会出现一些噪声和伪影,并且需要较高的显卡性能。

测试参数:

  • 模型:DreamShaper_XL1.0_alpha2.safetensors
  • Sampling steps:30
  • CFG:7

测试效果(左侧是 DPM++ 2M SDE Karras,右侧是 DPM++ 3M SDE Karras):
Sampler

整体差别较小,建议使用 DPM++ 2M SDE Karras 即可。

SDXL 的 Refiner 的作用就是,使用精修模型(Refiner)对于基础模型(Base)的输出进行细化和优化,从而生成更接近真实的图像,与基础模型(Base)串联使用,也可以单独用于图像到图像的转换。

注意:对于现有的混合模型,如 DreamShaper 等,已包括精修,不需要额外使用 Refiner 操作,同时,两者的细节没有差别。

测试效果(左侧是 未使用 Refiner,右侧是 使用 Refiner):
SDXL
DreamShaper 使用 Refiner 导致部分细节颜色异常,注意右侧图像(Refiner),即:

IMG
Stable Diffusion WebUI 已支持 Refiner 功能,不需要额外插件,同时配置 切换时机,即:

Refiner

测试:

cinematic photo full body shot,(head-to-toe shot:1.2),1girl,a beatiful woman in a dress and jacket standing,(office lady high heels),
pantyhose,black leggings,outdoors,
people in the center,soft light,natural and comfortable pose,face to camera,
<lora:neg4all_xl_v6:1>,<lora:pantyhose_widget_xl_v10:1.2>, . 35mm photograph, film, bokeh, professional, 4k, highly detailed
Negative prompt: nsfw,breast,(ng_deepnegative_v1_75t:1.2),badhandv4, drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly
Steps: 30, Sampler: DPM++ 3M SDE Exponential, CFG scale: 7, Seed: 3098710835, Size: 768x1152, Model hash: 0f1b80cfe8, Model: DreamShaper_XL1.0_alpha2, Denoising strength: 0.3, Clip skip: 2, ADetailer model: face_yolov8n.pt, ADetailer confidence: 0.3, ADetailer dilate/erode: 4, ADetailer mask blur: 4, ADetailer denoising strength: 0.4, ADetailer inpaint only masked: True, ADetailer inpaint padding: 32, ADetailer version: 23.9.2, Hires upscale: 2, Hires steps: 10, Hires upscaler: 4x-UltraSharp, Lora hashes: “neg4all_xl_v6: 9a735be26f5e, pantyhose_widget_xl_v10: 90b94c2a1974”, Version: v1.6.0

参考:Stable Diffusion - SDXL 模型测试与全身图像参数配置

<think>好的,用户想了解如何安装Stable Diffusion WebUI的DPM++ 2M Karras采样器。首先,我需要回忆一下关于Stable Diffusion WebUI的组件结构。根据引用[4]提到的,WebUI是一个功能丰富的GUI,通常采样器作为内置功能可能已经包含在安装包中,不需要额外安装。 接下来,检查用户提到的DPM++ 2M Karras是否属于默认采样器。常见的采样器如Euler、DDIM、DPM系列通常都是集成好的,尤其是如果用户使用的是最新版本的WebUI。引用[3]中的测试参数使用了DreamShaper模型,但未提及采样器安装,可能默认支持。 然后,考虑用户是否需要更新WebUI来获取最新采样器。根据引用[1]和[4],官方GitHub仓库可能已经包含这些采样器,用户只需通过git pull更新即可。如果用户安装的是旧版本,可能需要升级。 另外,检查是否有特殊情况需要手动安装,但根据现有引用,没有提到DPM++ 2M Karras需要额外步骤。因此,回答应指导用户确认WebUI版本,并更新到最新版,然后在设置中选择该采样器即可。同时提醒用户模型兼容性,如引用[3]中的XL模型可能需要特定设置。</think>### Stable Diffusion WebUI安装DPM++ 2M Karras采样器指南 1. **确认基础环境** - 需已安装最新版Stable Diffusion WebUI(AUTOMATIC1111版本),可通过Git命令更新: ```bash cd stable-diffusion-webui git pull ``` 引用[4]指出官方仓库是功能更新的主要来源[^4] 2. **采样器内置特性** - DPM++ 2M Karras属于WebUI原生支持的采样器,不需要单独安装。在WebUI的采样器选择下拉菜单中可直接选取,操作路径: $$ \text{操作面板} \rightarrow \text{Sampling method} \rightarrow \text{DPM++ 2M Karras} $$ 3. **版本兼容性验证** - 若界面未显示该采样器,需检查WebUI版本是否为2023年后的更新版本。可通过命令行重新安装依赖: ```bash pip install -r requirements.txt ``` 4. **参数配置建议** - 结合引用[3]的测试参数,建议搭配XL模型时设置: $$ \text{Sampling steps} \geq 20,\quad \text{CFG Scale} \in [5,8] $$ 可获得最佳效果[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值