欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/136924304
大语言模型的分布式训练是一个复杂的过程,涉及到将大规模的计算任务分散到多个计算节点上。这样做的目的是为了处理巨大的模型和数据集,同时,提高训练效率和缩短训练时间。
- 模型并行:这是分布式训练中的一个重要概念,涉及到将模型的不同部分放置在不同的计算节点上。例如,一个大型的Transformer模型可能会被分割成多个小块,每个小块在不同的GPU上进行计算。
- 数据并行:在数据并行中,每个计算节点都有模型的一个副本,并且每个节点都在模型的不同部分上工作,但是都在处理不同的数据子集。这样可以在多个节点上同时进行模型训练,从而提高效率。
- 通信优化