布尔可满足性相关问题的复杂性与算法研究
1. 失败文字存在性的下界构建
在布尔可满足性问题的研究中,失败文字的存在性是一个重要的研究方向。为了完成向失败文字存在性的归约,我们构建了公式 (F_{fl})。具体做法是,对于每个 (p \in P),向 (F’) 中添加子句 ((\neg w \vee \neg y_p)),或者等价地添加 ((w \to \neg y_p))。
对于公式 (F_{fl}) 中的文字 (\ell),有如下结论:
- 若存在 (p \in P) 使得 (\ell = y_p),并且存在 (q \in Q) 使得 (pq) 满足 (F),则 (\ell) 是 (F_{fl}) 中的失败文字。
- 否则,(\ell) 不是失败文字。
证明过程如下:
1. 情况一:(\ell) 为负文字
- 由于所有子句都是非单位 Horn 子句,将所有变量赋值为 0 可以满足 (F_{fl} \wedge (\ell)),所以 (\ell) 不是失败文字。
2. 情况二:(\ell) 为正文字且不是 (y_p) 形式
- 将集合 ({\ell, w} \cup {y_q : q \in Q}) 中的变量赋值为 1,其他变量赋值为 0,可以满足 (F_{fl} \wedge (\ell)),因此 (\ell) 不是失败文字。
3. 情况三:(\ell = y_p) 且对于任意 (q \in Q),(pq) 不满足 (F)
- 根据之前的引理,将 (y_p) 和所有满足 (p(C_i)
订阅专栏 解锁全文
10

被折叠的 条评论
为什么被折叠?



