(以前的草稿,内容很少,删了也可惜,LCA、桥、割、联通分量、二分图之类的都没写了,因为懒。。。)
一.图的遍历:
1.前向星
名字虽然很奇怪,其实就是链表存储的图,当矩阵存不下或者花费时间较多的情况下使用。(基本没用过矩阵建图了。。。。)
也可以使用stl的vector,但是一般比较占内存和效率不够。贴上代码:
#include <iostream>
#include <cstdlib>
#include <cstdio>
using namespace std;
struct Node
{
int to;
int next;
};
struct Node edges[1000];
int head[100];
void AddNode(int from, int to,int k)
{
edges[k].to=to;
edges[k].next=head[from];
head[from]=k;
}
int main()
{
int node,edge;
int i;
int from,to;
int count=0;
scanf("%d%d",&node,&edge);
for(i=0;i<edge;i++)
{
scanf("%d%d",&from,&to);
AddNode(from,to,++count);
AddNode(to,from,++count);
}
int nd;
//for(int k=head[u];k!=-1;k=edges[k].next)我比较喜欢这种遍历
for(i=1;i<=node;i++)
{
nd=head[i];
while(nd!=0)
{
printf("(%d,%d) ",i,edges[nd].to);
nd=edges[nd].next;
}
printf("\n");
}
return 0;
}
对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若<u,v> ∈E(G),则u在线性序列中出现在v之前。
通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。
注意:
1)只有有向无环图才存在拓扑序列;
2)对于一个DAG,可能存在多个拓扑序列;
做法即不断从图中拿出没有入入度的点即可。
二.路径问题
1.最短路
(1).dijkstra单源最短路,图中不能有负权 复杂度o(n^2)。如果有多条最短路并且要知道是哪些边,可以跑一边最短路之后从终点向前推。点击打开链接
memset(v, 0, sizeof(v));//矩阵存储
for(int i = 0; i < n; i++) d[i] = (i==0 ? 0 : INF);
for(int i = 0; i < n; i++) {
int x, m = INF;
for(int y = 0; y < n; y++) if(!v[y] && d[y]<=m) m = d[x=y];
v[x] = 1;
for(int y = 0; y < n; y++) d[y] = min(d[y], d[x] + w[x][y]);
}
const int INF=0x3f3f3f3f;
const int MAXN=1000010;
struct qnode
{
int v;
int c;
qnode(int _v=0,int _c=0):v(_v),c(_c){}
bool operator <(const qnode &r)const
{
return c>r.c;
}
};
struct Edge
{
int v,cost;
Edge(int _v=0,int _cost=0):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
bool vis[MAXN];
int dist[MAXN];
void Dijkstra(int n,int start)//点的编号从1开始
{
memset(vis,false,sizeof(vis));
for(int i=1;i<=n;i++)dist[i]=INF;
priority_queue<qnode>que;
while(!que.empty())que.pop();
dist[start]=0;
que.push(qnode(start,0));
qnode tmp;
while(!que.empty())
{
tmp=que.top();
que.pop();
int u=tmp.v;
if(vis[u])continue;
vis[u]=true;
for(int i=0;i<E[u].size();i++)
{
int v=E[tmp.v][i].v;
int cost=E[u][i].cost;
if(!vis[v]&&dist[v]>dist[u]+cost)
{
dist[v]=dist[u]+cost;
que.push(qnode(v,dist[v]));
}
}
}
}
void addedge(int u,int v,int w)
{
E[u].push_back(Edge(v,w));
}
(2).spfa,单源最短路,可以判负环。
bool spfa(int s)//若存在负环返回false
{
queue<int> q;
memset(inq,0,sizeof(inq));
memset(cnt,0,sizeof(cnt));
memset(d,0x3f3f3f3f,sizeof(d));
d[s]=0;
inq[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
inq[u]=0;
for(int i=head[u];i!=-1;i=edges[i].next)
{
int v=edges[i].to;
int w=edges[i].w;
if(d[v]>d[u]+w)//松弛操作
{
d[v]=d[u]+w;
if(!inq[v])
{
q.push(v);
inq[v]=1;
if(++cnt[v]>n)//最多松弛n-1次,所有有负环
return false;//有负环
}
}
}
}
return true;
}
(3). flody算法,求图中任意两点间的最短路o(n^3) 注意其实flody是可以存储路径的,贴一个hdu1385的代码,问从a到b的最短路并且字典序最小的输出,該题经过一个城市也会有花费,所以也要算入最短路。
#include <iostream>
#include <cstdio>
using namespace std;
const int maxn = 1234;
const int _max = 0x3f3f3f3f;
int dist[maxn][maxn];
int dir[maxn][maxn];
int a[maxn];
int n, k;
void flody()
{
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
if(dist[i][j] > dist[i][k] + dist[k][j] + a[k])
{
dist[i][j] = dist[i][k] + dist[k][j] + a[k];
dir[i][j] = dir[i][k];
}
else if(dist[i][j] == dist[i][k]+dist[k][j]+a[k] && dir[i][j]>dir[i][k])
dir[i][j] = dir[i][k];
}
void outpath()
{
int u, v;
while(scanf("%d %d", &u, &v))
{
if(u==-1&&v==-1) break;
int m = u;
printf("From %d to %d :\n", u, v);
printf("Path: %d", u);
while(u!=v)
{
printf("-->%d", dir[u][v]);
u = dir[u][v];
}
printf("\n");
printf("Total cost : %d\n\n", dist[m][v]);
}
}
int main()
{
while(scanf("%d", &n) != EOF && n)
{
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
{
scanf("%d", &dist[i][j]);
if(dist[i][j] == -1) dist[i][j] = _max;
dir[i][j] = j;
}
for(int i = 1; i <= n; i++)
scanf("%d", &a[i]);
flody();
outpath();
}
}
2..第k短路,求s到t的第k短路,先求一遍最短路,得到dist数组,再用当前已经走过的长度+dist[i]作为启发函数,A*搜索。A*搜索的过程中不判重,直到第k次到达终点则是k 短路。k短路题
3.欧拉路径和欧拉回路。注意图要联通!
欧拉路径:图中经过每条边一次且仅一次的路径
欧拉回路:图中经过每条边一次且仅一次的路径并且回到原点。 欧拉路径学习
基于以上可以做这题,poj 2513,网络赛的题目:hdu 5883
但是有的时候题目会需要求一条欧拉回路的方案,我们需要知道欧拉回路的一个性质,如果从一个图G中去掉一个圈得到的新图G'也有欧拉回路,那么G也有欧拉回路,所以一旦找到一个圈就将这个圈从图里拿出来,反复如此直到图空为止。
poj 1041 John's trip 求字典序最小的欧拉回路序列
const int maxn=1995;
const int maxm=1000000;
int fa[maxn];
vector<pair<int,int> > adj[maxn];
bool vis[maxm];
int getfa(int x)
{
return x==fa[x]?x:fa[x]=getfa(fa[x]);
}
void add(int x,int y,int z)
{
adj[x].push_back(make_pair(z,y));
adj[y].push_back(make_pair(z,x));
}
vector<int> path;
#define eid first
#define vtx second
void dfs(int u)
{
for(int i=0;i<adj[u].size();++i)
if(!vis[adj[u][i].eid])
{
vis[adj[u][i].eid]=true;
dfs(adj[u][i].vtx);
path.push_back(adj[u][i].eid);
}
}
#undef eid
#undef vtx
bool solve(int n)
{
for(int i=0;i<=n;i++)
fa[i]=i;
for(int i=1;i<=n;i++){
for(int j=0;j<adj[i].size();j++){
fa[getfa(i)]=getfa(adj[i][j].second);
}
}
int origin=-1;
for(int i=1;i<=n;i++)
if(adj[i].size())
{
if(adj[i].size()%2) return false;
if(origin==-1) origin=i;
if(getfa(i)!=getfa(origin)) return false;
sort(adj[i].begin(),adj[i].end());
}
path.clear();
memset(vis,false,sizeof(vis));
if(origin!=-1) dfs(origin);
reverse(path.begin(),path.end());//倒置
return true;
}