音源分离 | Spleeter: a fast and efficient music source separationtool with pre-trained models

一、摘要

        Spleeter 是一个用于音乐源分离的快速高效工具,它使用预训练模型。Spleeter 的设计考虑了易用性、分离性能和速度。该工具基于 Tensorflow,能够使用预训练模型通过单一命令行将音乐音频文件分离成多个音轨。一个音乐音频文件可以被分离成 2 个音轨(声乐和伴奏),4 个音轨(声乐、鼓、贝斯和其他)或 5 个音轨(声乐、鼓、贝斯、钢琴和其他)。

        此外,用户还可以使用 Tensorflow 训练源分离模型或微调预训练模型(前提是你有孤立源的数据集)。预训练模型的性能非常接近已发布的最先进水平,并且是公开发布的在常见的musdb18 基准测试中表现最好的 4 个音轨分离模型之一。Spleeter 也非常快速,能够在单个 GPU 上使用预训练的 4 音轨模型,将混合音频文件分离成 4 个音轨的速度比实时快 100 倍(不过,需要注意的是,由于需要缓冲,该模型不能实时应用)。【2020年的文章】

二、方法

2.1 引言

        Spleeter 的开发旨在帮助音乐信息检索(MIR)研究社区利用源分离技术来处理各种 MIR 任务,如从音频中分析声乐歌词、音乐转录、歌手识别、多标签分类、声乐旋律提取或封面检测等。Spleeter 还允许研究人员在私有数据集上比较他们新模型的性能与最先进的模型,而不是仅仅使用 musdb18 数据集。

2.2 方法

        Spleeter 包含了用于声乐/伴奏分离、4 音轨分离(声乐、贝斯、鼓和其他)以及带有额外钢琴音轨的 5 音轨分离的预训练模型。这些预训练模型是 U-nets,遵循与之前研究中

### K-Adapter 的工作机制 K-Adapter 提供了一种灵活的技术方案,允许在预训练模型中注入知识而无需重新调整整个模型的权重。这种方法的核心在于引入 **适配器 (Adapters)** 结构来实现知识融合[^1]。 #### 1. 适配器的设计原则 适配器是一种轻量级模块,嵌入到预训练模型的不同层之间。这些模块通常由全连接网络组成,具有较少的可训练参数。通过这种方式,K-Adapter 能够显著减少计算开销并提高效率[^3]。 #### 2. 知识注入的具体过程 K-Adapter 使用两种主要方式完成知识注入: - **保持原模型参数不变**:预训练模型的主要结构及其参数被完全冻结,仅对新加入的知识适配器进行微调。这种设计有效防止了“灾难性遗忘”,即在学习新知识时不丢失已有能力[^4]。 - **分布式训练支持**:由于各个适配器之间的信息流相互独立,因此它们可以在不同的设备上分别训练,进一步提升了系统的扩展性和灵活性。 #### 3. 下游任务的表现优化 当应用于具体任务时,K-Adapter 可以针对不同类型的任务定制化相应的适配器配置。实验表明,在多种自然语言处理场景下(如问答、分类等),该方法均取得了优异的效果。 ```python class AdapterLayer(nn.Module): def __init__(self, input_size=768, hidden_size=512): super(AdapterLayer, self).__init__() self.down_project = nn.Linear(input_size, hidden_size) self.up_project = nn.Linear(hidden_size, input_size) def forward(self, x): z = gelu(self.down_project(x)) output = self.up_project(z) return x + output ``` 上述代码展示了简单的适配器层实现逻辑,其中 `gelu` 表示激活函数 GELU,此架构能够轻松集成至现有 Transformer 架构之中。 ### 总结 综上所述,K-Adapter 利用适配器实现了高效且无损的知识注入策略,既保留了基础模型的强大泛化性能,又增强了其特定领域内的专业知识掌握程度[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值