开发了一款 Agent,每天全自动获取大模型日报并发送到微信群

  大家好,我是木川

之前有通过 RPA 实现抓取大模型日报推送到微信,效果还是挺不错的,但有个问题是 Mac 版本的 RPA 工具影刀不支持定时任务执行,所以还是需要每天手动点下执行按钮

对于我而言,我有点忍不了,所以我开发了全自动的方案,每天定时获取大模型日报并推送到微信群,全程不需要人工参与

本文流程如下:

3fe6f6508b3c0068e195e83904cb7d90.png

具体步骤如下:

  • 购买云服务器:选择一个合适的云服务器托管发送微信消息接口。

  • 部署消息接口:在云服务器上部署一个能够发送消息到微信的接口。

  • 创建 Coze 智能体:在 Coze 这个低代码机器人平台上,我们将添加一个机器人,它将调用我们部署的接口发送大模型日报到微信或者微信群。

其中智能体的工作流如下:

  • 抓取新闻:自动搜索并获取与大模型相关的最新新闻。

  • 阅读内容:深入阅读每篇新闻链接,提取精华内容。

  • 摘要提取:利用大模型技术,智能提取新闻摘要。

  • Markdown合成:将提取的摘要和内容合成为易于阅读的Markdown格式。

  • 发送消息:将这份精心制作的Markdown日报通过微信消息发送出去。

实现的效果如下:

00c8d36a79c2e015ca54414c3782b564.png

一、购买云服务器

腾讯云为新用户提供了免费试用服务器的福利,可以选择轻量应用服务器进行适用

1、进入云平台

5919596ae11941381c255018f1dcc6e4.png

2、选择镜像

镜像建议选择 Docker CE 19.03.9,内置安装了 Docker,方便后续通过 Docker 安装开源项目,选择好镜像后,点击试用

57309630d1f14ce01f88c21a7d511d4a.png

3、人脸认证

使用微信扫码进行人脸认证

bbb27592a9b56d637d4178d6a0319f7c.png
i
基于 wechatbot-webhook 的微信机器人,支持 GPT 问答、热搜、天气预报、消息转发、小游戏、Webhook提醒等功能。 GPT, 通常指的是“Generative Pre-trained Transformer”(生成式预训练转换器),是一个在自然语言处理(NLP)领域非常流行的深度学习模型架构。GPT模型由OpenAI公司开发,并在多个NLP任务上取得了显著的性能提升。 GPT模型的核心是一个多层Transformer解码器结构,它通过在海量的文本数据上进行预训练来学习语言的规律。这种预训练方式使得GPT模型能够捕捉到丰富的上下文信息,并生成流畅、自然的文本。 GPT模型的训练过程可以分为两个阶段: 预训练阶段:在这个阶段,模型会接触到大量的文本数据,并通过无监督学习的方式学习语言的结构和规律。具体来说,模型会尝试预测文本序列中的下一个词或短语,从而学习到语言的语法、语义和上下文信息。 微调阶段(也称为下游任务训练):在预训练完成后,模型会被应用到具体的NLP任务中,如文本分类、机器翻译、问答系统等。在这个阶段,模型会使用有标签的数据进行微调,以适应特定任务的需求。通过微调,模型能够学习到与任务相关的特定知识,并进一步提高在该任务上的性能。 GPT模型的优势在于其强大的生成能力和对上下文信息的捕捉能力。这使得GPT模型在自然语言生成、文本摘要、对话系统等领域具有广泛的应用前景。同时,GPT模型也面临一些挑战,如计算资源消耗大、训练时间长等问题。为了解决这些问题,研究人员不断提出新的优化方法和扩展模型架构,如GPT-2、GPT-3等,以进一步提高模型的性能和效率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值