面对众多AI助手,如何选择?腾讯元宝、Kimi、智谱清言对比分析

  大家好,我是木川

前几天,腾讯正式发布了面向消费者端的 AI 助手“腾讯元宝”,目前已经上架各个应用商店。

腾讯元宝是依托于腾讯混元大模型的 AI 产品,提供了 AI 搜索、AI 总结、AI 画图等核心能力,能够一次性解析多个微信公众号链接、网址,以及 PDF、Word、TXT 等多种格式的文档。

我也试用了下,并从以下几方面,和国内比较火的 Kimi、智普清言对比了下,如果你不知道怎么选,可以看看这篇文章

一、AI 搜索能力

AI 助手都能够理解和处理自然语言输入,根据用户的指令执行各种任务,比如搜索信息

OpenAI 的 GPT-4 是 2023 年 3月14 日上线的,我们就问下各个 AI 助手,看哪个回答得更好

Kimi

参考了 10 篇文章,准确回答了发布日期,没有后续的推荐问题

53e1383ecc7272300f453059fbd9239a.png

智谱清言

参考了 1 篇文章,准确回答了发布日期,有 3 个推荐问题,可以继续提问

39b228a9423d4c0f608fb288ca386309.png

腾讯元宝

参考了 8 篇文章,准确回答了发布日期,还回答了 GPT-4 的特点及应用场景等,回答末尾还推荐了微信公众号,有 3 个推荐问题,可以继续提问

9a14ecb87f1519ff1f51c06a3e55b507.png0566772db284e8e80f9ba3dff3e629c3.png

结论:腾讯元宝依托微信公众号的优质内容,搜索功能更强大,并且在回答本问题的同时,还推荐其它问题和优质公众号,用户体验更好

二、文档总结能力

用户可直接上传文件,快速输出要点,信息总结更轻松。

Kimi

总结更加全面,在长文本处理方面,确实表现不错

50c021cb0d2853b724a4e6dd6886960c.png

智谱清言

总结内容也比较全面,只是和 Kimi 组织信息的角度略有不同

03685d93875f6393ddad3faa60794402.png

腾讯元宝

总结稍微片面,主要涉及代码部分,其它部分总结较少

51bda2b7561ee83ed3c8a7e41df84ded.png42a4860b6b4d059b00abc7e67156bd66.png


总结:Kimi 长文本处理能力更强,总结更完善

三、网页内容总结

在用户浏览网页时,自动提取网页关键信息,从而节省阅读时间,提高效率。以公众号文章为例,看看效果

Kimi

可以自动提取网页关键信息,但总结的内容不够精准,比如主要事实中的4、5、6 点其实是 第 3 点的子主题,应该罗列在一起

a1082bfe2f8c2e27ebae39c688e7b2cd.png

智谱清言

无法直接访问公众号文章链接内容,需用户提供文章内容描述

3d63020d8f7ce92461206a161abd3ab4.png

腾讯元宝

可以自动总结,并且能够准确的罗列子标题,相比 Kimi 更准确

bfb485bca9bd0611eac94f8880fcf93c.png

结论:腾讯元宝在公众号文章内容总结方面胜出

四、AI 作图能力

上传图片获取对应的提示词,然后测试 3个大模型的作画水平

前往 http://imagetoprompt.com 上传图片,获取提示词

dff8bf28a50f902c18a329e960b62f95.png

Kimi

不支持多模态-文生图

072e0416960ef07b6dee347c69d05910.png

智普清言

0a994fea927b9a168414b23ccc6439b4.png

腾讯元宝

56b4189d49d3f51c0f5eeff87ecaef8b.png


结论:Kimi 不支持绘图,智普清言和腾讯元宝均可支持 AI 作图,效果不相上下,和原图有一定的相似性

五、总结

综合来看,Kimi、智谱清言、腾讯元宝各具特色和优势,用户可以根据自己的需求和应用场景选择合适的大模型助手。

AI 助手AI 搜索能力文档总结能力网页内容总结AI 作图能力
Kimi无后续问题推荐总结全面,长文本处理能力突出能准确总结公众号文章内容,但总结不够精准不支持多模态-文生图
智普清言提供 3 个推荐问题总结内容比较全面无法直接访问公众号文章链接内容,需用户提供文章描述支持 AI 作图,效果与原图有一定相似性
腾讯元宝提供 3 个推荐问题,回答更加完善,并且推荐优质公众号总结较为片面能准确总结公众号文章内容,子标题分类清晰支持 AI 作图,效果与原图有一定相似性

以下是个人的建议:

1)长文档总结,建议 Kimi

2)AI 搜索或者公众号文章总结,建议腾讯元宝

3)其它场景应用,建议智普清言


今天的分享就到这里了,欢迎加我微信围观高质量朋友圈,还有机会和 500 位 AI 编程高手一起交流

c33de7394382b183c266318c11e36d82.png

关注我的星球,分享 AI 技术和读书心得,置顶贴领取价值 399 元 的 AI 大礼包。

f1838fc6b63ef21c117b0782c45e5bdb.jpeg

### 实现RAG Flow与Kimi或智谱轻平台的集成适配 #### 1. RAG架构概述 在当前的技术环境下,Advanced RAG架构由于其显著效果易于实现的特点,在2024年占据了主流地位[^1]。这种架构允许更灵活的数据检索生成机制,特别适合处理复杂查询。 #### 2. Kimi平台集成方案 对于Kimi平台而,要实现RAG flow的集成,主要涉及以下几个方面: - **数据预处理模块**:需要建立一个高效的数据索引系统来支持快速检索。可以考虑采用Solana框架中的Agent Kit工具集来进行优化[^2]。 - **模型调用接口**:设计API用于连接现有的对话管理组件与新的RAG流程。这一步骤确保了当用户提问时,能够触发适当的知识库查找操作并返回最相关的结果。 ```python import requests def call_kimi_api(query): url = "http://kimi-platform/api/v1/query" payload = {"text": query} response = requests.post(url, json=payload) return response.json() ``` #### 3. 智谱轻平台适应策略 针对智谱轻平台,则应重点解决以下两个问题: - **增强型问答能力**:利用像ChatGLM这样的大模型替代传统固定的Q&A模式,从而提高响应的质量灵活性[^4]。这意味着不仅限于简单的匹配已有条目,而是可以根据上下文动态生成更加个性化的回复。 - **持续学习机制**:引入类似于Anda框架下的永久记忆特性,使得每次交互后的经验都可以被保存下来供后续参考,进而不断改进系统的性能表现[^3]。 ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name = 'chatglm-large' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) def generate_response(context, question): input_text = f"{context} [SEP] {question}" inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True) outputs = model.generate(**inputs) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值