支持向量机(SVM)中的对偶问题

前言

在SVM中有一个求极小值的问题转换过程,转换为一个对偶问题,但是我不太清楚这个问题为什么可以转换,而且还不太清楚为什么这么转换?不太明确转换后有什么优点,写个文章来了解这些内容。

原始问题转换

min ⁡ 1 2 ∣ ∣ w ∣ ∣ 2 s . t . y i ( x i + b ) > = 1 i=1,2...,n \min \quad \frac{1}{2} ||w||^2 \\ s.t. \quad y_i(x_i+b) >=1 \qquad \text{i=1,2...,n} min21w2s.t.yi(xi+b)>=1i=1,2...,n
拉格朗日乘子之后的公式为:
F ( w , b , a ) = 1 2 ∣ ∣ w ∣ ∣ 2 + ∑ i = 1 n a i [ 1 − y i ( w x i + b ) ] s . t . a i > = 0 F(w,b,a)= \frac{1}{2} ||w||^2+\sum_{i=1}^{n}a_{i}[1-y_i(wx_i+b)] \\ s.t. \quad a_i>=0 F(w,b,a)=21w2+i=1nai[1yi(wxi+b)]s.t.ai>=0
优化问题为:
min ⁡ F ( w , b , a ) = 1 2 ∣ ∣ w ∣ ∣ 2 + ∑ i = 1 n a i [ 1 − y i ( w x i + b ) ] \min \quad F(w,b,a)= \frac{1}{2} ||w||^2+\sum_{i=1}^{n}a_{i}[1-y_i(wx_i+b)] minF(w,b,a)=21w2+i=1nai[1yi(wxi+b)]

  • 有一个疑惑,为什么是 1 − y i ( w x i + b ) < = 0 1-y_i(wx_i+b)<=0 1yi(wxi+b)<=0?
    这样可以把 a i > 0 a_i>0 ai>0作为约束条件,小于0 乘以-1就可以非常方便的转换过去。

我们假设有一个最优解 w ∗ w^* w,则得到最小值 f ( w ∗ ) = 1 2 ∣ ∣ w ∗ ∣ ∣ 2 f(w^*)= \frac{1}{2} ||w^*||^2 f(w)=21w2,则会发现一些:
min ⁡ F ( w ∗ , b , a ) < = f ( w ∗ ) \min \quad F(w^*,b,a)<= f(w^*) minF(w,b,a)<=f(w)
最优解 w ∗ w^* w,使得 1 − y i ( w x ∗ + b ) < = 0 1-y_i(wx^*+b)<=0 1yi(wx+b)<=0,则 ∑ i = 1 n a i [ 1 − y i ( w ∗ x i + b ) ] < = 0 \sum_{i=1}^{n}a_{i}[1-y_i(w^*x_i+b)]<=0 i=1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值