组合数学(研讨)——前言笔记

前言

组合数学是一门计算机专业的基础理论课。
那它究竟学啥呢?
其课程主要内容有:
排列与组合、鸽巢原理、生成排列和组合、二项式系数、容斥原理、图论。
里面肯定有很熟悉的内容,举个小栗子:
鸽巢原理也许有点陌生,那它的别名——抽屉原理呢,把n+1个物体放入n个盒子里,则至少有一个盒子里含有两个或两个以上的物体, 这么一说就熟悉了一些,当然如果说成是Ramsey定理的特例,那又模糊了,Ramsey定理又是啥,还是看下面的学习吧。

参考书又是一本黑面书,贵滴滴:

在这里插入图片描述

一. 组合数学的发展历史在这里插入图片描述二项式系数

杨辉三角----二项式系数

在这里插入图片描述

二. 组合数学的例子

1. 棋盘的完美覆盖

在这里插入图片描述

上面的8×8棋盘例子,可见必然存在完美覆盖, 设棋盘的方格个数为n,
假如n=1,显然这个问题无解,n=3,这个问题也无解,其实这是个简单的逻辑,一个多米诺牌需要占两个方格,也就是说方格总数必须是2的倍数,也就是说n必须是偶数。
首先看一下3*2的棋盘有多少种排列组合方式? 如下图所示。

(1)在这里插入图片描述(2)在这里插入图片描述(3)是(2)上下颠倒的图形。

一共就以上三种排列方式。 接着我们看一下3×4的棋盘有多少种排列方式?除了可以分为两个3×2外,还有可能如下图所示。

在这里插入图片描述注意这也是两种。(上下颠倒)

由此可见,有3×3+2=11种排列方式。 ……
啊啊啊啊啊,我半途放弃了,这个8×8的结果12988816,鬼鬼,我一时还是没研究出来,当然百度了下还没找到,但愿我之后还有时间抽空看一下,原谅我~

而扩展到m×n棋盘呢?此时它的完美覆盖不一定存在,满足什么条件才一定存在完美覆盖呢?不难看出,当且仅当m和n中至少有一个是偶数,等价说成这个棋盘的方格数为偶数时。

在这里插入图片描述

把一个棋盘随意剪去一些方格,得到的是一张“残缺棋盘”。那么,关于残缺棋盘的覆盖问题又怎么样呢?

在这里插入图片描述

这样分析:每一张骨牌覆盖相邻的两个方格,那么就假设棋盘是黑白相间的,呈现这样的场景:

在这里插入图片描述

去掉的两个方格必然是相同的颜色,于是原来32张黑色和32张白色变成了32黑色(白色),30白色(黑色)。
如果31张骨诺牌能够完美覆盖,那么就产生了这样的关系式: 31(black+white)=32black+30white[or: 32white+30black],这显然是不成立的。

在这里插入图片描述

所以一种完美覆盖都不存在。
那是否棋盘具有相同的黑方格数和白方格数,就存在完美覆盖呢?下面这个反例给出答案。

在这里插入图片描述

拓展
如果棋盘的规格是m×n,且一张牌的长度是b(称作b格牌),那么这样的棋盘能够被b格牌完美覆盖吗?

在这里插入图片描述

显然,想要完美覆盖,b必然是m×n的因子,这就是充分条件:b是m或者n的因子(联系实际)。事实上,有这样的结论:m×n的棋盘有b格牌的完美覆盖当且仅当b是m或者n的一个因子。 下面证明它为必要条件。 已知bk=mn,这里重点是分类讨论b

  1. 当b是质数时,显然b或者是m的一个因子或者是n的一个因子。
  2. 当b是合数时,设m和n除以b时的商和余数分别为p,q,r,s,则:m=pb+r(0<=r<=b-1),n=qb+s(0<=s<=b-1), 通过交换棋盘的行和列,不妨设r<=s,下证r=0。 我们将棋盘进行染色,用1~b的颜料,相邻两个格子颜色不同。
    完美覆盖的每一张b格牌覆盖b个方格且每一个方格覆盖一种颜色。因此,在棋盘上每一种颜色的方格数一定相同。
    我们将一个棋盘分为三个部分:上方pb×n部分,左下方r×qb部分和右下方r×s部分。
    在上方部分,每一列上每一种颜色出现p次,所以总共出现pn次。 同理,在左下方部分,每一行上,因为每一种颜色出现q次,因此它们总共出现rq次。
    因此在左上方和上方每一种颜色出现的次数相同。结合前文中“因此,在棋盘上每一种颜色的方格数一定相同。”得到右下方每种颜色出现次数也相同,即r×s=r×b,得到b=s,与前文“(0<=s<=b-1)”矛盾,证毕。

在这里插入图片描述

2. 幻方

在这里插入图片描述

n=2时,不存在幻方。

在这里插入图片描述

用这个方法构造如下5阶幻方:

17241815
23571416
46132022
101219213
11182529
3. 36军官问题

大数学家欧拉曾提出一个问题:即从不同的6个军团各选6种不同军阶的6名军官共36人,排成一个6行6列的方队,使得各行各列的6名军官恰好来自不同的军团而且军阶各不相同,应如何排这个方队?如果用(1,1)表示来自第一个军团具有第一种军阶的军官,用(1,2)表示来自第一个军团具有第二种军阶的军官,用(6,6)表示来自第六个军团具有第六种军阶的军官,则欧拉的问题就是如何将这36个数对排成方阵,使得每行每列的数无论从第一个数看还是从第二个数看,都恰好是由1、2、3、4、5、6组成。历史上称这个问题为三十六军官问题。

在这里插入图片描述

解决:
三十六军官问题提出后,很长一段时间没有得到解决,直到20世纪初才被证明这样的方队是排不起来的。尽管很容易将三十六军官问题中的军团数和军阶数推广到一般的n的情况,而相应的满足条件的方队被称为n阶欧拉方
欧拉曾猜测:对任何非负整数t,n=4t+2阶欧拉方都不存在。
t=1时,这就是三十六军官问题,而t=2时,n=10,数学家们构造出了10阶欧拉方,这说明欧拉猜想不对。
但到1960年,数学家们彻底解决了这个问题,证明了n=4t+2(t≥2)阶欧拉方都是存在的。

这种方阵在近代组合数学中称为正交拉丁方,它在工农业生产和科学实验方面有广泛的应用。现已经证明,除了2阶6阶以外,其它各阶3,4,5,7,8,……各阶正交拉丁方都是作得出来的。
举例:
3阶:
(1,1) (2,2) (3,3)
(2,3) (3,1) (1,2)
(3,2) (1,3) (2,1)
4阶:
(2,1) (4,4) (3,2) (1,3)
(4,2) (2,3) (1,1) (3,4)
(3,3) (1,2) (2,4) (4,1)
(1,4) (3,1) (4,3) (2,2)
5阶:
(1,1) (2,2) (3,5) (4,3) (5,4)
(4,5) (1,3) (5,2) (3,4) (2,1)
(2,4) (5,5) (4,1) (1,2) (3,3)
(5,3) (3,1) (1,4) (2,5) (4,2)
(3,2) (4,4) (2,3) (5,1) (1,5)

在这里插入图片描述

4. 最短路径问题

在这里插入图片描述

三. 什么是组合数学

在这里插入图片描述

四. 组合数学的研究工具

在这里插入图片描述

五. 小结

在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值