通俗地讲一下庞加莱猜想是怎么回事(from 鼓浪)

二十一人民网论坛数学网友


通俗地讲一下庞加莱猜想是怎么回事
据说庞加莱猜想被中国人证明了,那个证明的长度有三百多页,这样一来就成了中国人的骄傲。本贴子因此就打算通俗地介绍一下庞加莱猜想是怎么回事。

因为,要说起来这个猜想的术语那是很抽象的,是说“单连通的闭三维流型同胚于三维球面”,但是这让数学的外行害怕,一害怕就不敢研究。但这样就有问题,万一其它专业的人要利用这个原理呢?所以我尝试用通俗的办法来讲一下什么是庞加莱猜想。

首先,我以前一直就是有一个观点,那就是数学家真没有意思,数学家要证明的东西,往往在常人看来,都是废话。什么是废话呢?比如人不吃饭要饿死,汽车没有火车跑得快这样的肯定对头的话,或者在常人看来理当如此的话。但是数学家们偏要证明一下,而且证明起来还挺难。

比方说吧,两点之间直线最近,这件事情不要说每一个人知道,甚至连一条狗都知道。但是你要真正证明它,光大学的高等数学知识还是不够的,还要进修泛函分析,变分法,这才能够证明这件事情,瞧这多麻烦?

好,现在来讲这个庞加莱猜想是什么回事,后面大家会看到,那其实也是一个废话。当然,现在已经证明了,就是庞加莱定理了。因为是在三维空间,因此就好说了。

我们居住的房子,如果里面没有摆放任何家具,当然就是一个长方体的形状的空间,有长,宽,高。当然,我们不讨论这样的通常的房子。

我们想象这样一个房子,这个空间是一个球。或者,想象一下,一只巨大的足球,里面充满了气,我们钻到里面看,这就是一个球形的房子。

嗨,我不妨假设这个球形的房子周边其实是钢做的表面,非常结实,没有窗户没有门,我们现在在这样的球型房子里呆着。

现在拿一个汽球来,带到这个球形的房子里。随便什么汽球都可以(我一开始故意这么说,其实对这个汽球是有要求的)。这个汽球并不是瘪的,而是已经吹大成某一个形状了,什么形状都可以(后面要说明这也是胡说,其实对形状也是有要求的)。但是这个汽球,我们还可以继续吹大它,而且假设汽球的皮特别结实,肯定不会被吹炸了。还要假设,这个汽球的皮是无限薄的。当然,又无限薄又能够结实,这本身就是脱离实际了,但是没有办法啊,科学总是要抽象的嘛,不让抽象我们就得不出什么成果。

好,现在我们继续吹大这个汽球,一直吹啊吹。吹到最后会怎么样呢?那个庞加莱先生就猜想了,吹到最后,一定是这个汽球的表面和整个球形房子的墙壁表面紧紧地贴住,中间没有缝隙了。

当然,还要有一些假设,就是我们这个人不能呆在这个球形房子里,否则的话汽球会有一部分贴到人身上,而不是贴到墙壁上了。可是没有人怎么吹汽球呢?哎呀抽象嘛。我们可以假设有一个小精灵躲在汽球里面吹,用一个压缩的空气瓶吹。或者,也可以不是吹这个汽球,而是在这个大球形的,非常结实的钢制的房子外面抽气,把房里的气抽光,则汽球里的空气就能够膨胀,也能够达到效果,反正最后一定是能够汽球的表面和房子墙壁紧紧贴着,一点缝隙都没有。

但是这个猜想到现在还不严格。如果这个汽球只是一个长形的,或者球形的,那是可以做到的。但是,如果这个汽球是一个救生圈的形状,那就不行了,因为救生圈在不断吹大的时候,最后有一些表面并不是紧贴在墙面上,而是会相互挤在一起。

因此,这个猜想就必须把类似救生圈一类的汽球排除开。认为拿这样的汽球来吹属于赖皮行为。

最后定的规则是这样,就是,如果我们钻到那个汽球里去(假设我们是小人国里的小精灵,会飞),我们用一只苍蝇,用一根线绑在苍蝇身上,(假设这根线无限细且没有重量。然后让苍蝇随意地到处飞。这样,我手中的线就象风筝线一样不断地放出去,最后那个苍蝇还要飞回来,飞回来以后,我把栓在苍蝇身上的线头解下来,和我手中的线系在一起,这就构成了一个圈,或者叫一个绳套吧,能够把人勒死的那种。然后把这个绳套往自己怀里拉,拉呀拉,最后总能够把这个绳套统统都给拉回来。比如说,救生圈形状就不行,因为如果苍蝇在救生圈里飞了一圈回来,我这个结成的绳套就肯定收不会来,而给挡在那里了。那么,这样的汽球就不符合要求。

因此,我要求的汽球,它的形状虽然可以随意,但是,里面的任何一根封闭的曲线,或者说绳套吧,都不会绕过一根类似柱子这样的东西,或者说,这个汽球看上去没有“孔”,不象救生圈那样,可以把一个头伸进去。这样的汽球,数学家起了一个名字叫“单连通”,之所以要起这么吓人的名子,无非是为的显示自己挺有学问罢了,吓唬人的,无非是一个整个的不带孔的汽球嘛。

也就是说,庞加莱定理,说的就是,一个单连通的汽球(市面上卖的汽球大多数都是单连通的),在一个球形的房子里使劲地吹,最后一定能够使汽球的表面和球形房子的墙壁紧紧贴着,一点缝隙都没有。当然,得假设这个球形的房子里的空气,随着汽球的吹大,是会被排光的。

瞧,就这么个事,象不象废话啊?为证明这件事情花了三百多页,是不是有一些吃饱了撑得慌?

不光如此,这说法还如此地学究,什么“单连通的闭三维流型同胚于三维球面”,吓唬人不是?硬要将汽球说成是流型,显摆自己学问深不是?唉,总算球面大家还是知道的。什么叫“同胚”?也够吓唬人的,就是把汽球吹大后两个表面紧紧贴着。

所以啊,诸位小朋友们也可以想一些这样的废话,也就可以给出中国人给出的猜想了。现在光是外国人有猜想,中国人却没有。要我早知道庞加莱瞎猜的东西有这么简单,我就提前猜想了,让别人累得半死去证明去。那我多有名啊。

其实这样的猜想我也已经想到了一个。上面不是讲如果一个汽球是球生圈的形状,就不能够在一个球形的房间里吹大且和球形的墙壁紧密接触吗?那么好了,我这儿也设计一个巨大的房子,不是球形的,是一个球生圈形状的,而且,那个救生圈形状的汽球也套在这个巨大的房子里,这样我再吹这个汽球,它就肯定和这个房子的墙壁紧密接触了吧?

好,现在本人提出最伟大的数学猜想如下:

将一个内胎置入一个外胎里,然后对这个内胎使劲打气,最后的结果一定是内胎的外表面和外胎的内表面亲密接触。

bbs1.replays.net/htm_data/98/0606/664487.html


 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 庞加莱猜想是一个关于质数的数学难题,提出于1640年代末由数学家庞加莱(Pierre de Fermat)。猜想的严谨形式如下: 对于任意整数n>2,如果2^(n-1)≡1(mod n),那么n一定是质数。 迄今为止,庞加莱猜想尚未得到严谨证明。尽管如此,在过去几百年中,数学家们已经证明了庞加莱猜想在许多特殊情况下是正确的,例如当n小于等于3×10^4时,以及当n是满足一些其他条件的数字时。 庞加莱猜想尚未证明或者反证是因为现在已知的证明方法都无法构造出来一个反例 ( Counter Example ) . 其他证明该猜想的方法也还在不断地被探索中. ### 回答2: 庞加莱猜想是20世纪初法国数学家亨利·庞加莱提出的一项重要数学问题,它主要关注于三维欧几里得空间中的拓扑形态。庞加莱猜想假设:“任意一个连续的、有限的、无界的、完整的无法缩减为一点的三维流形都是同胚于三维球面。”为了严谨证明这个猜想,我将介绍一种较为简化的证明方法,由Grigori Perelman在2003年提出的证明思路。 首先,我们需明确庞加莱猜想关注的是三维欧几里得空间中的连续流形。在流形的定义下,我们可以使用微分几何的工具对其进行研究。根据流形的性质,我们可以引入一些关键概念,如曲率、度量等,这些概念有助于我们理解流形的本质。 接下来,我们需要证明的是,任意满足庞加莱猜想所述条件的流形都是同胚于三维球面。这可以通过证明三个关键命题来实现: 命题一:任意满足条件的流形是闭的,即没有边界。这可以通过使用流形的性质以及拓扑学中的一些定理和结果进行推导。 命题二:任意满足条件的流形具有正的平均曲率。通过使用微分几何的工具以及曲率的定义,可以得到该结论。 命题三:任意满足条件的流形是各向同性的,即其各个方向上的特征相同。这一结论来自于流形的平滑性和对称性的推导。 最后,结合以上三个命题,我们可以得出结论:任意满足庞加莱猜想所述条件的三维流形都具有正的平均曲率、各向同性以及闭合,从而可以被同胚于三维球面。 需要注意的是,上述只是一种较为简化的证明思路,并没有涵盖具体的数学推导过程。庞加莱猜想在领域内仍然存在许多深奥的数学理论和更复杂的证明方法,其中包括拓扑学、微分几何、拓扑三维流形的分类等领域的知识和技巧。 ### 回答3: 庞加莱猜想,又称为三维球面上的闭曲线定律或者指环定理,最初由法国数学家亨利·庞加莱于1904年提出。这个猜想表述了,在三维空间中的任意连续曲线都可以缩成一个点,即闭曲线不可以存在自交的情况。 为了证明庞加莱猜想,我们首先需要讨论三维空间的基础概念。在三维空间中,曲线可以用参数方程表示,即 C(t) = (x(t), y(t), z(t)),其中t为参数。 我们在这里引入曲线的长度概念。对于曲线C(t),其长度可以表示为积分形式 L = ∫(t1,t2)√[x'(t)² + y'(t)² + z'(t)²]dt, 其中x'(t),y'(t),z'(t)分别表示C(t)在x、y、z轴上的导数。 接下来,我们假设存在一个闭曲线C,其自交,即曲线上存在两点P和Q,它们相交于点R,如下所示: C(t) = R, P<t<Q。 根据曲线的长度定义,我们可以将曲线从P点开始分成两段曲线,即 C1(t) = (x1(t), y1(t), z1(t)),P<t<R,线段PR; C2(t) = (x2(t), y2(t), z2(t)),R<t<Q,线段RQ。 对于曲线长度来说,我们有 L = L1 + L2 = ∫(t1,R)√[x1'(t)² + y1'(t)² + z1'(t)²]dt + ∫(R,t2)√[x2'(t)² + y2'(t)² + z2'(t)²]dt。 由于C(t)是一个闭曲线,即t1和t2可以取任意值。那么我们可以假设有一个最小长度的情况,使得L最小。在这个最小长度情况下,我们可以通过构造改变曲线C的方法,将C(t)缩成一个点。这与庞加莱猜想的假设相矛盾。 因此,根据最小长度的分析推理,我们得出结论:三维空间中的任意连续闭曲线都可以缩成一个点,即庞加莱猜想成立。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值