AI制造之美

       我们要深耕制造AI,真的要深思一个问题,“制造AI的理论基础”是什么?这个问题值得我们深思,最近看了一篇博文是关于:把一个好公司在AI转型过程中变成了废柴,结合一些AI实践经验,写一点分享心德。

       还是回到“制造AI的理论基础”这个问题,我认为制造AI并不是否定过去数学科学分析,而是新技术+现有数学理论模型的一个再升华,一些情况下完全可以用以前的分析模型上+ AI算法能力把业务分析变得更精准,更高效,有一些难以用数学建模解决的问题,可以用分析因子AI建模的方式解决(比如生产工艺控制点特别复杂,影响的因素特别多,工艺专家也拿不准时,这种情况下可以通过AI非数据建模进行分析,结果往往也比较理想),数学科学分析是制造AI理论基础,AI是制造AI的升华,这是第一点认识。

       数学科学分析的一般原理是通过现象,建立一些数学泛化可推导公式,再利用这些泛化公式进行新数据预测,其实最早的天气预报就是这种方式感觉(没有经过考证),如简单的数学公式函数:线性函数、正弦、余弦等等,也就是说数学科学分析背后都有相应的公式予以支撑,并且参与计算的计算元数量有限,一般也不进行数据缩放,在一些应用场景由于很难构建出合适的数学公式模型,这种分析手段是有限的,但在一些业务领域是完全可用的,以前的金融风险分析模型就是这种模式。

      神经网络好处在于“暴力美学”,背后支撑他的理论显得并不那么重要,一切以数据和算法训练为核心,最后形成预测模型,这个模型产生的结果可能并不是一个或几个数学公式可以表达的,所以通过AI模型进行分析使得分析建模的过程相对要简单了,只要选择一些相关因子,然后进行特性提纯(甚至有些情况都不需要,工艺人员特别清楚),再把数据分为:训练结果集,验证结果集,测试结果集进行训练,最后准确率达到一定指标就可以正式预测,这个过程其实没有真正做过数学建模分析,但在很多实际场景中,直接用进行AI暴力分析,最后出来的结果可能与真实场景差距巨大,AI不是万能的,明明可以用简单的数学分析可以解决的(AI算法也可以做基础数学分析),非要用深度学习,效果肯定不行,另外做AI训练可以很多的经验积累也很难出现好的效果(体现在高参调试),也就是说如果现在已经有比较成熟的分析理论在实践中已经使用,那通过AI算法实现这些方法给现有业务赋能即可,真的不需要推翻过去重来一遍,一定要做技术加法不要轻易推翻过去的经验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值