1.数据结构的研究对象
数据时用于描述客观事物的数值、字符以及一切可以输入到计算机中并由计算机程序加以处理的符号的集合。数据的基本单位是数据元素,性质相同的数据元素的集合叫做数据对象。
2.抽象数据型
在软件设计中,可以对3种不同的对象进行抽象,即过程抽象、控制抽象和数据抽象。
抽象数据型上一个数学模型和在该模型上定义的操作集合的总称。而数据结构则是抽象数据型中数学模型的表示。
当使用数据结构来表示作为抽象数据型的数学模型时,认为结点是数据结构的基本构件;而一个结点是由若干相同或不同类型的常数或变量,按照一定的方式进行组合所形成的数据集合。
常见的聚集信息的机制:
- 数据
- 结构体类型
- 文件
多层次抽象技术:一般事先将比较简单或基本的数据类型抽象出来,给出定义;再用已定义的数据类型去定义更复杂的数据类型,完成对后者的抽象即用已定义的类型来表述要定义的类型的定义域,并用前者的操作来表述后者的操作,即所谓的逐层抽象技术。
多层次抽象通常可依采用自底向上的方式进行。
抽象数据型的优点:
- 降低了软件设计的复杂性。
- 提高了程序的可读性和可维护性。
- 程序的正确性容易得到保证。
3.算法及其复杂性
算法是指解决问题的方法或过程。一个算法是若干规则所构成的有穷序列,每个规则规定了解决某特定问题所采取的动作。
算法有以下5个重要的特性:
1. 输入:有零个或者多个外部变量作为算法的输入。
2. 输出:算法至少产生了一个量作为输出。
3. 确定性:组成算法的每条指令是清晰而无歧义的。
4. 有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有
5. 可行性:算法中的每个运算步骤都可以精确地执行,而且人们用纸和笔作有穷次运算即可完成。
好的算法的应考虑的目标:
1. 正确性:算法应当能够正确地解决求解问题。
2. 可读性:算法应当具有良好的可读性,便于人们使用。
3. 健壮性:当输入非法数据时,算法也能适当地作出反应或进行处理,而不会产生莫名其妙的输出结果。
4. 效率与低存储量的要求:效率是指算法的运行时间,存储量要求是算法运行过程中所需要的最大存储空间。
一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数f(n),随着问题规模n的增大,算法的执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂性。通常用 O、Ω、θ、ο 表示。
最坏复杂性:设 Input是问题R输入集合,Complexity (x)是求解问题R的算法A的复杂性函数,Size (y)是问题R的规模函数,则A的最坏复杂性
最好复杂性: 设 Input是问题R输入集合, Complexity (x)是求解问题R的算法A的复杂性函数, Size (y)是问题R的规模函数,则A的最好复杂性
平均复杂性: 设 Input是问题R输入集合, Complexity (x)是求解问题R的算法A的复杂性函数, Size (y)是问题R的规模函数,设 y∈Input ,而 Py 是y作为额算法A的输入出现的概率,则A的平均复杂性
时间复杂性分析的基本方法:
1. 加法规则
设
T1(n)
和
T2(n)
是程序段
P1
和
P2
的运行时间,则执行
P1
之后紧接着执行
P2
的运行时间
T1(n)+T2(n)
是
O(max{f(n),g(n)})
。
2. 乘法规则
T1(n)⋅T2(n)=O(max{f(n)⋅g(n)})
。
分析时可以遵循以下规则:
- 每个赋值语句或读/写语句的运行时间通常是 O(1) (表示增长率是常数),但也有一些例外情况。
- 语句序列的运行时间由假发规则确定,即为该语句序列中时间消耗最多的语句的运行时间。
- 分支语句(if、if-else和switch语句)的运行时间由条件测试时间(通常是 O(1) )加上各分支中运行时间最多的语句的运行时间。
- 循环语句的运行时间是对输入数据重复执行n次循环体所耗时间的总和,此时数据规模n表示重复次数。
将常数因子忽略不计,通常可认为上述时间是循环重复次数n和m的乘机,其中m是n次执行循环体当中事件消耗最多的那一次的运行时间,从而可按乘法规则计算这个乘机。
当遇到多重循环时,要从内层循环向外层循环逐层分析。- 函数调用语句的运行时间分析:
若程序中只有非递归调用,即从被调函数开始分析,而这种被调函数本身没有其他函数调用。
若程序中有递归调用,则令每个递归函数对应于一个位置的时间开销函数 T(n) ,其中n是该函数参数的大小,之后列出关于T的递归方程并求解。- 程序中出现goto语句的时间分析:
若goto语句在循环体内是有条件执行的,则可以认为由goto语句引起的控制转移根本没有发生。
4.逐步求精的程序设计方法
解决过程大致可分为4个阶段:
1. 模型化:即选择适当的数学模型来描述问题, 即数学建模。
2. 找出算法:即根据第一阶段的数学模型找出解决问题的方法,并用非形式化语言描述。
3. 逐步求精:即对上述非形式化的算法逐步精确化,向某种高级语言程序靠拢。此阶段可能包括许多步球i纪念馆,当到达某一步时,根据程序中使用的数据形式,定义若干个抽象数据型,并且用抽象数据型中的操作替代对应的非形式语句。
4. 实现:对每个抽象数据型选取适当的数据结构表示数学模型,并且用相应的过程或函数实现每一步操作。