【练习】判断无向图是否是树

  一个无向图G是一棵树的条件是G必须是无回路的连通图或是有n-1条边的连通图,这里采用后者实现。
  在深度搜索遍历的过程中,同时对遍历过的顶点和边数计数,当全部顶点都遍历过且边数为 2(n1) 时,这个图就是一棵树,否则不是一棵树。

#include<stdlib.h>
#include<stdio.h>
#include<malloc.h>
#include<string.h>
/*图的邻接表类型定义*/
typedef char VertexType[4];
typedef char InfoPtr;
typedef int VRType;
#define MaxSize 50              /*最大顶点个数*/
typedef enum{DG,DN,UG,UN}GraphKind;     /*图的类型:有向图、有向网、无向图和无向网*/
typedef struct ArcNode          /*边表结点的类型定义*/
{
    int adjvex;                 /*弧指向的顶点的位置*/
    InfoPtr *info;              /*与弧相关的信息*/
    struct ArcNode *nextarc;    /*指示下一个与该顶点相邻接的顶点*/
}ArcNode;
typedef struct VNode            /*表头结点的类型定义*/
{
    VertexType data;            /*用于存储顶点*/
    ArcNode *firstarc;          /*指示第一个与该顶点邻接的顶点*/
}VNode,AdjList[MaxSize];
typedef struct                  /*图的类型定义*/
{
    AdjList vertex;
    int vexnum,arcnum;          /*图的顶点数目与弧的数目*/
    GraphKind kind;             /*图的类型*/
}AdjGraph;
/*函数声明*/
int LocateVertex(AdjGraph G,VertexType v);
void CreateGraph(AdjGraph *G);
void DisplayGraph(AdjGraph G);
void DestroyGraph(AdjGraph *G);
int IsTree(AdjGraph *G);
void DFS(AdjGraph *G,int v,int *vNum,int *eNum);
int visited[MaxSize];
void main()
{
    AdjGraph G;
    printf("采用邻接矩阵创建无向图G:\n");
    CreateGraph(&G);
    printf("输出无向图G:");
    DisplayGraph(G);
    if(IsTree(&G))
        printf("无向图G是一棵树!\n");
    else
        printf("无向图G不是一棵树!\n");
    DestroyGraph(&G);
}
int IsTree(AdjGraph *G)
{
    int vNum=0,eNum=0,i;
    for(i=0;i<G->vexnum;i++)
        visited[i]=0;
    DFS(G,0,&vNum,&eNum);
    if(vNum==G->vexnum && eNum==2*(G->vexnum-1))
        return 1;
    else
        return 0;
}
void DFS(AdjGraph *G,int v,int *vNum,int *eNum)
{
    ArcNode *p;
    visited[v]=1;
    (*vNum)++;
    p=G->vertex[v].firstarc;
    while(p!=NULL)
    {
        (*eNum)++;
        if(visited[p->adjvex]==0)
            DFS(G,p->adjvex,vNum,eNum);
        p=p->nextarc;
    }
}
void CreateGraph(AdjGraph *G)
/*采用邻接表存储结构,创建无向图G*/
{ 
    int i,j,k;
    VertexType v1,v2;               /*定义两个顶点v1和v2*/
    ArcNode *p;
    printf("输入图的顶点数,边数(逗号分隔): ");
    scanf("%d,%d",&(*G).vexnum,&(*G).arcnum);
    printf("输入%d个顶点的值:\n",G->vexnum);
    for(i=0;i<G->vexnum;i++)            /*将顶点存储在表头结点中*/
    {
        scanf("%s",G->vertex[i].data);
        G->vertex[i].firstarc=NULL; /*将相关联的顶点置为空*/
    }
    printf("输入弧尾和弧头(以空格作为间隔):\n");
    for(k=0;k<G->arcnum;k++)            /*建立边链表*/
    {
        scanf("%s%s",v1,v2);
        i=LocateVertex(*G,v1);
        j=LocateVertex(*G,v2);
        /*j为入边i为出边创建邻接表*/
        p=(ArcNode*)malloc(sizeof(ArcNode));
        p->adjvex=j;
        p->info=NULL;
        p->nextarc=G->vertex[i].firstarc;
        G->vertex[i].firstarc=p;
        /*i为入边j为出边创建邻接表*/
        p=(ArcNode*)malloc(sizeof(ArcNode));
        p->adjvex=i;
        p->info=NULL;
        p->nextarc=G->vertex[j].firstarc;
        G->vertex[j].firstarc=p;
    }
    (*G).kind=UG;
}
int LocateVertex(AdjGraph G,VertexType v)
/*返回图中顶点对应的位置*/
{ 
    int i;
    for(i=0;i<G.vexnum;i++)
        if(strcmp(G.vertex[i].data,v)==0)
            return i;
        return -1;
}
void DestroyGraph(AdjGraph *G)
/*销毁无向图G*/
{ 
    int i;
    ArcNode *p,*q;
    for(i=0;i<(*G).vexnum;++i)          /*释放图中的边表结点*/
    {
        p=G->vertex[i].firstarc;        /*p指向边表的第一个结点*/
        if(p!=NULL)             /*如果边表不为空,则释放边表的结点*/
        {
            q=p->nextarc;
            free(p);
            p=q;
        }
    }
    (*G).vexnum=0;              /*将顶点数置为0*/
    (*G).arcnum=0;                  /*将边的数目置为0*/
}
void DisplayGraph(AdjGraph G)
/*图的邻接表存储结构的输出*/
{ 
    int i;
    ArcNode *p;
    printf("%d个顶点:\n",G.vexnum);
    for(i=0;i<G.vexnum;i++)
        printf("%s ",G.vertex[i].data);
    printf("\n%d条边:\n",2*G.arcnum);
    for(i=0;i<G.vexnum;i++)
    {
        p=G.vertex[i].firstarc;     /*将p指向边表的第一个结点*/
        while(p)                /*输出无向图的所有边*/
        {
            printf("%s→%s ",G.vertex[i].data,G.vertex[p->adjvex].data);
            p=p->nextarc;
        }
        printf("\n");
    }
}
  • 测试结果


这里写图片描述

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值