一个无向图G是一棵树的条件是G必须是无回路的连通图或是有n-1条边的连通图,这里采用后者实现。
在深度搜索遍历的过程中,同时对遍历过的顶点和边数计数,当全部顶点都遍历过且边数为
2∗(n−1)
时,这个图就是一棵树,否则不是一棵树。
#include<stdlib.h>
#include<stdio.h>
#include<malloc.h>
#include<string.h>
/*图的邻接表类型定义*/
typedef char VertexType[4];
typedef char InfoPtr;
typedef int VRType;
#define MaxSize 50 /*最大顶点个数*/
typedef enum{DG,DN,UG,UN}GraphKind; /*图的类型:有向图、有向网、无向图和无向网*/
typedef struct ArcNode /*边表结点的类型定义*/
{
int adjvex; /*弧指向的顶点的位置*/
InfoPtr *info; /*与弧相关的信息*/
struct ArcNode *nextarc; /*指示下一个与该顶点相邻接的顶点*/
}ArcNode;
typedef struct VNode /*表头结点的类型定义*/
{
VertexType data; /*用于存储顶点*/
ArcNode *firstarc; /*指示第一个与该顶点邻接的顶点*/
}VNode,AdjList[MaxSize];
typedef struct /*图的类型定义*/
{
AdjList vertex;
int vexnum,arcnum; /*图的顶点数目与弧的数目*/
GraphKind kind; /*图的类型*/
}AdjGraph;
/*函数声明*/
int LocateVertex(AdjGraph G,VertexType v);
void CreateGraph(AdjGraph *G);
void DisplayGraph(AdjGraph G);
void DestroyGraph(AdjGraph *G);
int IsTree(AdjGraph *G);
void DFS(AdjGraph *G,int v,int *vNum,int *eNum);
int visited[MaxSize];
void main()
{
AdjGraph G;
printf("采用邻接矩阵创建无向图G:\n");
CreateGraph(&G);
printf("输出无向图G:");
DisplayGraph(G);
if(IsTree(&G))
printf("无向图G是一棵树!\n");
else
printf("无向图G不是一棵树!\n");
DestroyGraph(&G);
}
int IsTree(AdjGraph *G)
{
int vNum=0,eNum=0,i;
for(i=0;i<G->vexnum;i++)
visited[i]=0;
DFS(G,0,&vNum,&eNum);
if(vNum==G->vexnum && eNum==2*(G->vexnum-1))
return 1;
else
return 0;
}
void DFS(AdjGraph *G,int v,int *vNum,int *eNum)
{
ArcNode *p;
visited[v]=1;
(*vNum)++;
p=G->vertex[v].firstarc;
while(p!=NULL)
{
(*eNum)++;
if(visited[p->adjvex]==0)
DFS(G,p->adjvex,vNum,eNum);
p=p->nextarc;
}
}
void CreateGraph(AdjGraph *G)
/*采用邻接表存储结构,创建无向图G*/
{
int i,j,k;
VertexType v1,v2; /*定义两个顶点v1和v2*/
ArcNode *p;
printf("输入图的顶点数,边数(逗号分隔): ");
scanf("%d,%d",&(*G).vexnum,&(*G).arcnum);
printf("输入%d个顶点的值:\n",G->vexnum);
for(i=0;i<G->vexnum;i++) /*将顶点存储在表头结点中*/
{
scanf("%s",G->vertex[i].data);
G->vertex[i].firstarc=NULL; /*将相关联的顶点置为空*/
}
printf("输入弧尾和弧头(以空格作为间隔):\n");
for(k=0;k<G->arcnum;k++) /*建立边链表*/
{
scanf("%s%s",v1,v2);
i=LocateVertex(*G,v1);
j=LocateVertex(*G,v2);
/*j为入边i为出边创建邻接表*/
p=(ArcNode*)malloc(sizeof(ArcNode));
p->adjvex=j;
p->info=NULL;
p->nextarc=G->vertex[i].firstarc;
G->vertex[i].firstarc=p;
/*i为入边j为出边创建邻接表*/
p=(ArcNode*)malloc(sizeof(ArcNode));
p->adjvex=i;
p->info=NULL;
p->nextarc=G->vertex[j].firstarc;
G->vertex[j].firstarc=p;
}
(*G).kind=UG;
}
int LocateVertex(AdjGraph G,VertexType v)
/*返回图中顶点对应的位置*/
{
int i;
for(i=0;i<G.vexnum;i++)
if(strcmp(G.vertex[i].data,v)==0)
return i;
return -1;
}
void DestroyGraph(AdjGraph *G)
/*销毁无向图G*/
{
int i;
ArcNode *p,*q;
for(i=0;i<(*G).vexnum;++i) /*释放图中的边表结点*/
{
p=G->vertex[i].firstarc; /*p指向边表的第一个结点*/
if(p!=NULL) /*如果边表不为空,则释放边表的结点*/
{
q=p->nextarc;
free(p);
p=q;
}
}
(*G).vexnum=0; /*将顶点数置为0*/
(*G).arcnum=0; /*将边的数目置为0*/
}
void DisplayGraph(AdjGraph G)
/*图的邻接表存储结构的输出*/
{
int i;
ArcNode *p;
printf("%d个顶点:\n",G.vexnum);
for(i=0;i<G.vexnum;i++)
printf("%s ",G.vertex[i].data);
printf("\n%d条边:\n",2*G.arcnum);
for(i=0;i<G.vexnum;i++)
{
p=G.vertex[i].firstarc; /*将p指向边表的第一个结点*/
while(p) /*输出无向图的所有边*/
{
printf("%s→%s ",G.vertex[i].data,G.vertex[p->adjvex].data);
p=p->nextarc;
}
printf("\n");
}
}
- 测试结果