ICLabel:自动脑电图独立成分分类器

脑电图(EEG)提供了一种非侵入性、最低限度限制和相对低成本的中尺度大脑动力学测量方法,具有高时间分辨率。尽管由多个相邻的脑电图头皮电极通道并行记录的信号是高度相关的,并且结合了来自许多不同来源的信号,但独立成分分析(ICA)已被证明可以隔离这些记录背后的各种源过程。通过ICA分解发现的独立成分(IC)可以手动检查、选择和解释,但这样做需要时间和实践。另外,足够精确的自动化IC分类器可用于将IC分类为广泛的源类别,加快对具有许多主题的EEG研究的分析,并使ICA分解在近实时应用中使用成为可能。本文提出了ICLabel,包括:(1)ICLabel数据集,(2)ICLabel网站,以及(3)自动ICLabel分类器。ICLabel分类器在两个方面改进了现有方法:提高计算标签估计的准确性和提高其计算效率。通过与其他公开可用的EEG IC分类器进行系统比较,该分类器优于或表现于之前最好的公开可用的IC类别自动化分类方法,同时计算这些标签的速度比该分类器快十倍。本文发表Neuroimage杂志。

1. 介绍

脑电图(EEG)是一种非侵入性、功能性的脑活动记录方式,具有较高的时间分辨率和相对较低的成本。尽管有这些好处,但一个不可避免的问题是,脑电图记录混合了更多源的活动,而不仅仅是参与者的大脑活动。每个脑电图电极通道收集所有接收到的电信号的线性混合,其中一些信号不是来自皮层,甚至不是来自其他生物来源。这种混合过程同样适用于大脑活动。来自局部相干皮层场活动区域的远场电势不仅会到达最近的脑电图电极,而且会在不同程度上几乎到达整个电极蒙太奇。独立成分分析(ICA)已被证明可以将记录的EEG活动分解并隔离为最大程度上独立的生成信号。通过假设原始的、未混合的源信号在空间上是平稳的,并且在统计上彼此独立,并且混合是线性和瞬时发生的,ICA同时估计一组线性空间滤波器,将记录的信号和源信号进行混合,这是线性分解的产物。

进一步的,电位也会在受试者的眼睛中产生,当他们的眼睛转动时,这些电位会以不同的方式投射到头皮。与任何与电极足够接近的强烈肌肉收缩相关的肌电图(EMG)活动也汇总到记录的脑电图信号中。甚至来自参与者心脏的心电图信号也可以出现在头皮脑电图记录中。完全非生物信号,如交流电装置的50Hz或60Hz振荡。当电极-皮肤界面阻抗较大或不稳定时,电极本身可以在记录的信号中引入伪影。所有这些电场和信号伪影结合在一起,形成记录在每个电极通道中的瞬时线性信号。然而,源信号本身在很大程度上是独立产生的,彼此之间不应该有任何一致的瞬时效应,因此可以使用ICA分解。

尽管ICA在脑电图数据上的应用很有用,但它引入了两个问题:(1)对噪声和伪影的敏感性;(2)ICA结果的模糊性。如果脑电图记录中存在太多伪影,甚至只有一些极端振幅的伪影,ICA解决方案可能是不可用的或有噪声的,由粗糙定义的独立分量(IC)组成。这一问题可以通过在应用ICA之前进行充分的信号预处理来缓解。相反,我们解决了ICA解决方案中的歧义问题,这个问题源于ICA是一种无监督学习方法。如果没有足够的培训和专门用于人工检查的时间,很难确定每个IC信号的来源。一种自动确定IC信号类别的解决方案,即IC分类或IC标记,将从四个方面帮助研究和使用EEG数据:

提供IC分类的一致性。2. 在大规模研究中加快IC的选择。3.为包括脑机接口(BCI)在内的实时应用自动化IC选择。4. 为缺乏必要培训的人员指导IC的选择,并通过实例帮助他们学习。

这项工作提出了一种新的IC分类器,以及用于训练和验证该分类器的数据集,以及用于为数据集收集众包IC标签的网站。分类器被称为ICLabel分类器,而数据集和网站分别被称为ICLabel数据集和ICLabel网站。创建和验证ICLabel分类器的过程始于创建ICLabel数据集和网站,因为网站用于注释创建分类器所需的数据集。

2. 背景

2.1 脑电成分解释

当信号发生器在记录电极上产生具有稳定空间投影模式的电场时,ICA分解可以在一个IC中捕获该活动。源信号的完美分离并不总是可能的,并且通常很难在没有同时侵入性记录的情况下进行验证。由于干净数据量不足或数据中有过多的伪影和噪声,ICA收敛较差,可能会发生次优信号解混。然而,由于ICA算法收敛的迭代性质,大多数IC主要考虑一个特定的源信号。为简化进一步讨论,例如,我们不会将“主要与大脑相关”或“与大脑无关的”的ICs称为“大脑ICs”,而是将主要负责大脑内部活动的ICs称为“大脑ICs”。虽然这种表示法更易于读写,但它也隐藏了IC及其所描述的信号的复杂性和不完善的可能性。因此,重要的是,读者不要忘记这个简单的命名法所掩盖的可能的复杂性。

2.2 之前的方法

现在常用且不需要除ICA分解的EEG记录和一般可用的元数据(如电极位置)之外的任何信息的方法有:

MARA:用于估计IC是(非脑)人工或脑IC的概率。它使用正则化LDA模型,训练了来自8个受试者的43个10分钟脑电图记录,包括1290个IC。所有IC都由两位专家标记。所有记录都使用了相同的实验范式。ADJUST:将IC分为五类,其中三类与眼睛活动有关。它的特征特定阈值是从一个单一实验范式的20个EEG记录中学习的。FASTER :旨在作为一个完整的处理过程,清理未处理的原始脑电图数据。这里只考虑IC分类的部分。如果FASTER计算的任何特征偏离数据集平均值超过三个标准差,则将IC标记为“人工的”SASICA:基于来自MARA、FASTER和ADJUST的特征以及其他特征执行半自动分类。SASICA最初是作为一种教育工具,帮助用户学习如何手动标记IC。当自动操作时,SASICA使用距离数据集平均值2到4个标准差之间的阈值。或者,可以手动选择阈值。 IC_MARC:使用了一个多项逻辑回归模型,该模型训练了46个脑电图记录,包括8023个IC和两个实验范式。

尽管存在这些IC分类方法,但通过增加输出描述性、准确性和效率,仍有改进的空间。如果一个IC分类器能够区分大量有用的IC类别,并且所提供的分类在所有相关类别中是概率性的,而不是离散的,单一类别的决定,那么它可以说是更具描述性的。准确性不仅指分类器在训练的同一类型数据上的性能,而且指分类器的性能在所有EEG数据上的泛化程度,与实验、记录环境、放大器、电极蒙太奇、预处理等无关。效率是指提取所需IC特征和计算IC分类的计算量和速度。虽然效率通常是有益的,但它只在特定情况下重要。具体来说,当在线数据需要IC分类时,效率是至关重要的。

2.3 ICLabel项目

ICLabel项目基于前述EEG IC分类器的理想品质提供了改进的分类。为了充分描述,ICLabel分类器计算七个IC类概率。为了在EEG记录条件下实现准确性,用于训练和评估ICLabel分类器的ICLabel数据集包含了来自多种范例的各种EEG数据集。这些示例IC与通过ICLabel网站从数百个贡献者收集的成分标签配对。最后,为了保持足够的计算效率,相对简单的IC特征被用作人工神经网络架构(ANN)的输入,尽管训练速度较慢,但计算IC标签很快。最终结果可以通过用于EEGLAB软件环境的ICLabel插件免费轻松地获得。

本工作中涉及的七个IC类别是:大脑ICs包含的活动被认为起源于一个皮层的局部同步活动。大脑ICs的功率谱密度往往与频率和功率成反比,并且通常在5到30 Hz之间的频段表现出更高的功率。如图1所示为脑IC的示例。肌肉ICs包含起源于肌肉运动单元(MU)组的活动,并包含在肌肉收缩和静态紧张期间聚集许多MU动作电位(MUAP)的强高频宽带活动。眼ICs描述的活动源于眼睛,由视网膜的高代谢率引起,产生电偶极子。心脏ICs虽然比较少见,但可以在脑电图记录中找到。线路噪声ICs捕捉来自附近电气装置或接地不良的EEG放大器的线路电流噪声的影响。通道噪声ICs表明,在电极通道上记录的部分信号几乎在统计上独立于来自其他通道的信号。这些成分可以由头皮电极结的高阻抗或物理电极运动产生,通常是信号质量差或影响单通道的大伪影的指示。其他ICs并不是一个明确的类别,而是对不符合前面任何类型的ICs的统称。这些主要分为两类:包含不确定噪声的ICs或包含ICA分解不能很好分离的多个信号的ICs。对于ICA分解的高密度脑电图记录(64通道及以上),大多数ICs通常属于这一类。

图1 来自ICLabel网站的一个IC标签示例,该示例还详细描述了上述功能。

向标签贡献者展示所示的IC测量,并必须决定哪个或哪些IC类别最适用。他们通过点击下面的蓝色按钮来标记他们的决定,并且在他们无法决定一个类别或认为IC包含添加的混合来源的情况下,可以选择多个类别。还有一个“?”按钮,他们可以使用它来表示对所提交的标签不太信任。

3. 方法

3.1 ICLabel数据集和网站

用于训练ICLabel分类器的ICLabel训练集目前来自加州大学圣地亚哥分校斯沃茨计算神经科学中心(SCCN)收集的6352个EEG记录。这些数据集来自许多研究,这些研究中使用的电极数量主要在32到256之间。数据集中有不同研究中的数据,在不同的研究中,记录电极头皮位置的准确性有所不同。但在几乎所有情况下,EEGLAB中的DipFit插件在逐眼拟合记录的蒙太奇位置后,将记录的位置调整为标准模板头部模型。我们认为这些记录代表了过去15年左右的心理生理学实验数据的典型数据。相当多的方法、蒙太奇和被试人群增加了可变性,这可能有助于ICLabel分类器很好地泛化。

总的来说,这些记录包括203307个独特的ICs;它们都没有标准化的IC分类元数据,因此在本项目中实际上没有进行标记。在计算特征之前,每个数据集都被转换为一个共同的平均参考。对于每个IC,ICLabel训练集包括一组标准测量:头皮地形、中位数功率谱密度(PSD)和自相关函数,以及单对称和双边对称等效电流偶极子(ECD)模型拟合,以及先前发表的分类器(ADJUST, FASTER, SASICA)中使用的特征。这些特征潜在地为IC分类器提供了有助于计算准确组件标签的信息。

3.1.1 IC特性描述

头皮拓扑图通过将IC投影到每个电极位置的插值和外推到头皮上的标准投影图像,直观地展示了IC活动如何投射到受试者的头皮。此外,为每个数据集(可用时)生成头皮地形所需的信息也包括ICA混合矩阵、通道位置和通道标签。从1到100 Hz的功率谱密度是使用韦尔奇方法的一种变化来计算的,该方法采用跨时间窗口的中值而不是平均值。之所以使用这一版本,是因为在脑电图数据集中,运动伪迹很常见,而且样本中位数对异常值的鲁棒性高于样本平均值。

ECD(等效电流偶极子)模型估计基于三层边界元法(BEM)正向问题头模板(MNI),并假设每个IC头皮地形是颅骨内无限小点源电流偶极子的头皮投影。一些IC需要双对称ECD模型,可能代表直接连接大脑中线的皮质块的联合激活。使用EEGLAB中的DipFit插件来拟合ECD模型,该插件可以计算最匹配IC头皮地形的偶极子位置。结果拟合得越好,IC的“偶极性”就越大。

3.1.2 ICLabel网站和标签收藏

为了在ICLabel训练集中收集IC的标签,使用Laravel网站框架用PHP脚本语言创建了ICLabel网站(https://iclabel.ucsd.edu/tutorial)。在超过250名贡献者的帮助下,ICLabel网站通过图1所示的界面在8000多个IC上收集了超过34000个建议标签。目前,每个标记IC平均有3.8个与之相关的建议标签。标签池由几个IC标签专家和许多未知的标签员组成。为了减轻新手向数据库提供不正确标签的影响,该网站还提供了关于如何识别和标记脑电图IC的全面教程。这样,ICLabel网站就成为了一个教育工具。许多访问该网站的人阅读IC标签教程并使用“实践标签”工具(https://iclabel。ucs http://d.edu/labelfeedback)。这种“实践标签”工具目前已被使用超过4.9万次,一些教授报告称用它来训练学生。

3.1.3 人群标签

为了创建一个与ICLabel训练集中的IC子集相关联的IC标签集,使用人群标记(CL)算法“人群标记潜伏狄利克雷分配”(CL-LDA)处理通过ICLabel网站收集的建议标签。这在训练集中提供了5937个可用的标记脑电图ICs。CL算法估计一个单一的“真实标签”,给出由不同标签商提供的IC的冗余标签。这可以通过多种方式完成,但每种CL方法都必须协调不一致的标签。CL算法通常通过注意哪些标签者倾向于同意其他人的意见,哪些标签者不同意,分别提高和降低这些用户的投票权重来做到这一点。一些方法只对估计的标签进行建模,而另一些方法则对每个标签师的技能进行建模,有些人甚至估计个别物品贴上标签的难度。

CL-LDA将“真实标签”估计为每个IC的组成向量,使用来自不同标签商的冗余标签。组合标签可以看作是软化的离散标签。在ICs的情况下,这是允许一个IC部分是“眼睛”部分是“肌肉”,或主要是“大脑”加上一些“线噪声”之间的区别,而不是断言任何特定的IC必须是“大脑”或“肌肉”或其他类别。实际上,组成标签承认ICs可能部分模糊,或者可能不包含完全未混合的信号。组合标签还可以揭示一个类别的IC如何与另一个类别混淆。

虽然参考标签(估计的“真实标签”)是训练ICLabel分类器所需的输出,但CL-LDA也同时计算标注者技能的估计,由混淆矩阵参数化。对于ICLabel数据集,这些混淆矩阵采用7英寸矩阵的形式,其中每行与第2.1节中提到的7个IC类别之一相关联,每列与ICLabel网站上允许的8种可能的回答之一相关联:7个IC类别和“?”混淆矩阵的每一行都可以解释为标签器提供每个响应的估计概率,前提是所讨论的IC属于该行相关的IC类别。一个完美的标签器应该在匹配IC类别和响应的条目中有1,比如“大脑”响应列和“大脑”IC行的交集,而在不匹配IC类别和响应的条目中有0,比如“眼睛”IC响应列和“大脑”IC行的交集。

3.2 ICLabel专家标记的测试集

ICLabel训练集上的IC分类性能并不是一般IC分类性能的理想指标,原因有两个:(1)标签是众包的,因此,即使在应用CL之后,一些标签也可能存在错误;(2)数据集在网络和超参数优化过程中被多次使用,尽管采取了避免这种情况的措施,但可能会造成一定程度的隐式过拟合。

由于这些原因,我们获取了训练集中没有的其他数据集,并请6名专家从这些数据集中标记130个ICs。这130个ICs组成了ICLabel测试集,我们用来验证ICLabel分类器。另外十个数据集来自五个不同的研究,每个研究两个数据集,使用了不同的记录环境、实验范式、脑电图放大器、电极蒙太奇、预处理流程,甚至ICA算法。我们特意寻找这些变化,作为ICLabel分类器泛化能力的替代测试。由于专家标记是一种稀缺资源,从所选数据集中,只有一个子集的IC显示专家标记。

3.3 ICLabel候选分类器

文章训练并比较了多个候选分类器,以选择最适合创建最终ICLabel分类器的体系结构和训练范式。这些候选版本在作为输入的特征集、训练范式和模型结构方面有所不同。用ICLabel训练集训练6个候选ICLabel分类器。文中测试了三种人工神经网络(ANN)架构,它们都具有相同的底层卷积神经网络(CNN)结构。图2图形化地总结了ICLabel候选的三种ANN架构。其中两个架构是仅在标记IC上训练的CNN。第一个CNN优化了未加权的交叉熵损失,而第二个CNN优化了双重加权脑IC分类错误(wCNN)的加权交叉熵损失。交叉熵是一个数学函数,它比较两个类概率向量,并产生一个与这两个向量的相似程度相关的标量输出。第三个分类器架构基于半监督学习生成对抗网络(SSGAN)的变体,生成对抗网络(GAN)的扩展。

图2 人工神经网络(ANN)架构在开发ICLabel分类器时进行了测试。

白色矩形表示由一个或多个卷积层组成的ANN块,箭头表示信息流。左上方标记为“半监督”(蓝绿色虚线轮廓)的部分仅在训练期间出现在GAN范式中,并用于生成模拟IC特征,以与ICLabel训练集中未标记的训练示例进行比较。右边标记为“判别器”的方框在所有三种训练范式的结构上几乎相同。箭头在分类器网络中的收敛表明了分类器在训练期间的输入源,而不意味着数据组合。训练完成后,分类器被给予未标记的ICs进行分类。

Generative Adversarial Networks:生成对抗网络(GAN)是两个相互竞争的人工神经网络(ANN),其中一个试图生成模拟数据(生成器网络),另一个试图辨别数据是模拟数据还是真实数据(判别器网络)。通常,GANs以两阶段迭代的方式进行训练,在第一阶段,生成器网络将随机噪声转换为鉴别器网络分类为“真实”或“虚假”的模拟示例。生成器网络参数被更新,以使鉴别器更有可能将生成的示例标记为“真实”。在第二阶段,鉴别器标记另一组生成的样本以及实际收集的样本。然后更新鉴别器网络参数,使鉴别器网络更有可能将生成的样本标记为“假”,而将实际样本标记为“真实”。重复这两个阶段,直到达到预定的收敛准则。SSGANs将“真实”类别被细分为多个类别,如“大脑”、“眼睛”和“其他”,而不是鉴别器网络决定真实数据和模拟数据。用于ICLabel分类器的模型扩展了SSGAN模型,使其具有多个生成器网络,每个用于描述ICs的特征集都有一个,它们都共享相同的随机噪声输入。作为最终输出,SSGAN产生了一个由2.1节中描述的七个IC类别的相对伪概率和发电机网络产生的IC的相对伪概率组成的八元组成向量。

通过将它们与两组可能的输入特征集相关联,进一步区分了这里描述的三种网络架构。第一组使用头皮地形和PSDs作为输入,而第二组也使用自相关函数。候选分类器没有使用包含在完整ICLabel训练集中的其他特征集,因为它们要么计算成本太高,无法计算,要么被发现在初步评估中除了头皮地形、PSD和自相关函数提供的信息之外,没有提供新的信息。

ICLabel训练集通过利用头皮地形的左右对称和正负对称被扩大到其原始大小的四倍。专家标记的测试集没有重复这种增强。相反,最终的ICLabel分类器在内部复制每个IC,以利用两种头皮地形对称,并对四种分类结果取平均值。

3.4 评估

为了选择ICLabel分类器的候选分类器,使用在ICLabel训练集上重复测量设计了六个ICLabel分类器的候选版本。第一个因素,ANN架构,有三个层次:(1)GAN, (2) CNN和(3)wCNN。第二个因素,提供给分类器的特征集,有两个层次:(1)只使用头皮地形和PSD的网络,(2)也使用自相关函数的网络。下面,自相关特征集的使用在体系结构后面用下标“AC”表示,如GANAC。

为了比较候选分类器的性能,ICLabel训练集的标记部分被分割,以遵循十倍分层交叉验证方案。在每一次测试中,数据被分成训练数据、验证数据和测试数据(以8:1:1的比例),试图在标记数据的三个子集中保持相等的类比例。为了不浪费任何训练数据,生成性能最佳的ICLabel候选对象的训练范式随后被用于训练一个新的分类器,使用性能最佳的候选对象架构和整个ICLabel训练集,减去400个标记示例,现在作为早期停止的验证集。由此产生的分类器成为正式的ICLabel分类器,并与专家标记测试集中的现有方法进行了比较。

候选IC分类器之间的性能比较需要一组固定的IC类来比较分数。由于大多数IC分类器在不同的IC类别集之间进行区分,无论是在数量上还是解释上,都有必要合并标签类别以进行直接的分类器比较。在一个极端情况下,IC标签和预测可以简化为“Brain”或“Other”,从而可以比较几乎所有IC分类器。进一步的子集可以用于三个、五个和七个类的比较,如图3所示。这项研究使用了五个阶层和七个阶层的比较,以及已经描述过的两个阶层的比较。五类比较将所有与眼睛相关的IC类别合并为统一的Eye IC类别,将所有非生物人工IC和未知来源IC合并为统一的Other IC类别。5个类的比较允许ICLabel候选和最终分类器以及所有IC_MARC版本之间的比较,而7个类的情况只允许ICLabel候选和最终分类器之间的比较。

图3 由专家标记的测试集上评估的IC分类器标记的类别。

第2.2节描述了纵轴上列出的前五个分类器。连接不同分类器标签的树状结构和彩色框表示分类器标签是如何相关的,以及如何将它们合并以允许与不相同IC类别的分类器之间进行比较。例如,所有IC分类器可以在两个类别之间进行比较,方法是将红框中包含的所有类别合并到其他IC的总体类别中。同样,绿色框中的所有类别都可以简化为一个Eye IC类别。上图中使用了以下首字母缩写:“vEOG”表示“垂直EOG活动”,“ℓEOG”表示“横向EOG活动”,“LN”表示“线路噪声”,“CN”表示“通道噪声”。

通过比较离散IC标签和预测后的平衡精度和归一化混淆矩阵、离散IC标签后的受试者工作特征(ROC)曲线、来自“软”混淆矩阵的ROC等效度量,这里称为软工作特征(SOC)点、交叉熵和计算IC分类所需时间,来衡量分类器的性能。

4. 结果

4.1 ICLabel和之前的方法

文章将ICLabel分类器和ICLabelLite分类器,与之前存在的、公开可用的IC分类器进行了比较。如3.4节所述,除“Brain”外的所有IC类别必须合并,以便在专家标记的测试集中同时对所有IC分类方法进行比较。考虑到表1所示的平衡精度(值越高越好)和交叉熵(值越低越好),除了图4所示的两类情况下的ROC曲线外,此前唯一能与ICLabel竞争的分类器是IC_MARCSF。

表1 对于不同数量的IC类别,已测试的公开可用的IC分类器的标量性能度量。平衡精度越高,交叉熵越低,分类效果越好。

图4 ICLabel分类性能与几种可供选择的公开可用IC分类器的比较。

在专家标记的测试集上,(A)两类、(B)五类和(C)七类性能的ROC曲线和特征(SOC)点。灰色线表示F1分数等距为0.9、0.8、0.7和0.6(从上到下)。“Brain”图已被灰色化,因为专家只标记了一个与心脏相关的IC,导致该类别的SOC点和ROC曲线在很大程度上没有信息。

关于第一个因素,模型架构和训练范式,ROC曲线显示,与其他候选模型相比,基于GAN的ICLabel候选模型表现不佳。如图4所示,这在ROC曲线的所有七个类别中都可见,在SOC点的大多数类别中也可见。SOC点的例外是“通道噪声”成分,其中GAN方法在软测量中得分最高,而大脑IC和眼睛IC的GAN和未加权CNN模型表现相似。虽然在ROC曲线中,wCNN和CNN模型之间存在一致的微小差异,如Other IC和Chan Noise IC所示,但在SOC点上,wCNN模型的表现明显优于CNN模型,这表明了更强的差异。wCNN模型在所有类别中显示出更好的性能。除了线噪声IC和其他IC的例外情况,结果通常更倾向于wCNN模型而不是CNN模型。对于第二个因素,提供给候选分类器的特征集,包含自相关作为特征集似乎可以持续提高所有类的性能。对于肌肉IC和其他IC来说尤其如此。

有了这三个发现,官方的ICLabel分类器使用wCNNAC范式进行训练,并简单地称为ICLabel。这个新模型与已发布的IC分类方法进行了比较,最终作为EEGLAB插件公开发布。由于自相关特征集需要额外的时间来计算,另一种基于wCNN范式的模型也与已发表的IC分类方法进行了比较,以适应需要更快的特征提取时间的情况。这个新的基于wCNN的模型被称为ICLabelLite。

在五类比较中,IC_MARCSF在分类脑IC时表现略好于ICLabel(ROC曲线)。SOC点表明性能相当,其中IC_MARCSF实现了略高于ICLabel的TPR(真阳性率),代价是也具有更高的FPR(假阳性率)。对于肌肉IC,根据ROC曲线,IC_MARCEF_MARCEF优于所有其他方法,尽管在几乎所有其他测量中都表现不佳。在其他三种方法中,IC_MARCSF在阈值标签和预测后对Muscle IC实现了更高的召回率,如每个五类混淆矩阵的第二行(图5的上行)所示,尽管相应的ROC曲线并不优于任何一种ICLabel方法。两种ICLabel方法在Eye IC上的表现都非常好,从SOC点和ROC曲线上都可以看出,ICLabel方法的表现大大优于IC_MARC版本。

图5 规范化ICLabel和IC_MARC混淆矩阵从专家标记的测试集中计算,使用5个类(上一行)和7个类(下一行)。

每个混淆矩阵的行和列分别包含专家和分类器标记为特定类别的所有IC。行被归一化,这样对角线上的每个元素都代表该IC类别的真阳性率(召回率)。右边的“总数”列表示专家将多少IC标记为每个类别(用于标准化)。“Brain”行已经变成灰色,因为专家只标记了一个与心脏相关的IC,导致这一行的结果基本上没有信息。

除Other IC外,ICLabel和ICLabelLite ROC曲线在7类中与5类相比几乎保持不变,SOC点给出了类似的结果。如ROC曲线所示,尽管专家标记的测试集中线噪声IC的稀缺性产生了低分辨率的ROC曲线,额外的线噪声IC和通道噪声IC类别分类相对较好。SOC点表明,由于显示的TPR值较低,专家和ICLabel在这两个IC类别的整体标签组成方面存在一定程度的分歧。七类混淆矩阵显示ICLabel在信道噪声IC上的精度远低于ROC曲线的预期。与五类相比,其他IC的ROC曲线略有下降,尽管SOC点仍然具有可比性。这可能是由于区分信道噪声IC和其他IC的明显困难(图5中ICLabel混淆矩阵的第六行)。

尽管在五类比较中,IC_MARCSF对Brain IC的真阳性率比ICLabel高10%,但在七类比较中,这种差距几乎消失了。ICLabel在五个类中对Brain IC的真阳性率减少可能是用于合并类的方法的副作用。在未合并的比较中,多个概率较小的类别的求和概率总和可能超过最大类别的概率,可能会在多个比较中改变单个IC的IC分类。

4.2 IC分类速度

经验确定的IC分类速度见图6。两个IC_MARC版本需要相似的运行时间:每个IC的中位数为1.8秒。ICLabelLite和ICLabel需要的中位数运行时间分别为120毫秒和170毫秒。这些(中位数)分别比IC_MARC快15.5和13.0倍,对于单个数据集,平均最高分别快88和64倍,最低分别快9.8和6.7倍。ICLabelLite的IC分类速度中值是ICLabel的1.36倍,这完全是计算自相关特征集所需的时间造成的。

4.3 专家性能

由于ICLabel专家标记测试集中的每个IC都由六位专家标记,因此有机会估计专家IC分类的预期可靠性。表2显示了五项的结果。前三行总结了每个专家的分类与其他专家的分类的对齐程度,最后两行总结了每个专家的分类与CL-LDA估计的参考标签的对齐程度。这些措施表明,专家之间的一致性低于人们可能预期的,专家之间的一致性的乐观近似平均仅为77%。通过比较,专家与CL-LDA计算的参考标签之间的一致性始终大于或等于专家之间的一致性。表2 专家之间以及专家与CL-LDA参考之间的准确性度量。

5. 讨论

5.1 使用组合IC分类

像ICLabel生成的组合标签可以以多种方式使用。当需要一个单独的、离散的标签时,就像多类分类的典型情况一样,组合标签可以由具有最大概率的类别进行汇总。当采用这种方法时,最大概率的值可以解释为离散分类中分类器的置信度。如果分类问题可以推广到多标签分类之一,其中每个IC类别被检测到独立于其他IC类别,每个IC可以与零或多个不同的分类相关联。在这种情况下,类别特定的阈值可以单独应用于每个IC类别。该方法可以利用ROC曲线来估计最佳的特定类别阈值。ICLabel训练集和专家标记测试集的估计最佳阈值是通过在每条ROC曲线上取F1分数最大或准确度最高的点来确定的,如表3所示。组合IC标签向量中匹配或超过相应阈值的任何元素导致匹配IC类别的阳性检测。通过比较,当采用选择关联标签概率最大的类的多类分类方法时,隐式检测阈值可以是最大类概率与下一个最可能类的阈值之间的任意值。由于这个变量阈值对于每个分类的示例都是不同的,因此离散标签的分类器性能更难使用ROC曲线进行量化,因为曲线上的每个点都可能与分类器性能相关。在多标签情况下,ROC曲线提供了直接的性能估计,当选择单一阈值时,分类器被简化为ROC曲线上的单个点,因此,就TPR和FPR而言,分类器具有单一的性能值。虽然多标签分类比多类别分类更灵活,但它存在两种可能尴尬的结果:没有IC类别的IC和有多个IC类别的IC。表3 不同条件下多标签分类的独立成分(IC)类别检测阈值。每组阈值都是通过选择特定类别的阈值来确定的,这些阈值使指定数据集上的指定度量最大化。

成分标签也可以定性地用于人工检查。复合标签比简单的类标签信息量更大,更容易学习。它们还有助于通过以下方式清楚地识别混合组件:(1)显示哪一类最可能适用于IC,(2)指示所讨论的成分类似于其他哪个IC类型。在分类错误的情况下,成分标签也能提供更多信息,它可以显示哪些类别可能是正确的。虽然直接使用组合标签保留了ICLabel提供的大部分信息,但组合标签也很难以自动化的方式使用。

5.2 时间选择

ICLabel特征提取和推断的速度理论上允许分类器用于在线,接近实时应用。ICLabelLite通常比ICLabel快36%,每个IC的平均计算时间差异仅为50毫秒。因此,在大多数情况下,ICLabel对于接近实时的使用是足够高效的。进一步的考虑是,图6所示的时间是基于从每个EEG记录的整体中提取的特征。这些PSD和自相关估计是非因果的,因此不可能在实时应用中实现。相反,使用递归更新来估计这些特征是最好的,这不仅解决了因果关系的问题,而且还可能在时间上分散特征提取的计算成本。

现有的ICLabel在线应用程序是在实时脑电图源映射工具箱(REST)中,该工具箱实现了使用在线递归ICA(ORICA)进行近实时的脑电图数据预处理和ICA分解的自动化过程。REST可以近实时地对ORICA分解的EEG数据应用IC分类器,以选择感兴趣的IC或拒绝指定的IC类别。保留的IC可用于近实时地重建EEG通道数据的清理版本。

5.3 交叉验证的训练数据和专家标记的测试集结果之间的差异

ICLabel在交叉验证的训练数据上比在专家标记的测试集上获得了更高的分数。这可能有三个原因:(1)对ICLabel训练集的过拟合,(2)众包训练集和专家标记测试集之间的不同标记模式,以及(3)专家标记数据集性能测量的高方差,因为该数据集的规模相对较小、指定的专家标签者相对较少。(1)的训练期间的过拟合不太可能发挥主要作用,但因子(2)和(3)都可能是促成因素。要解决任何一个问题都需要更多的标记示例,特别是专家标记的示例,这是一种不便宜的解决方案。随着时间的推移,越来越多的标签提交到ICLabel网站,这些问题将得到解决。

5.4 注意事项

由于IC分类器的主要目的是实现自动化成分标记,因此对该分类器提供的结果有隐含的信任。如果所提供的标签是不正确的,从这些标签得到的所有进一步的结果都是危险的。虽然ICLabel分类器已经被证明可以提供高质量的IC标签,但意识到它的局限性也很重要,其中许多局限性可能是其他现有IC分类器所共有的。

ICLabel分类器的准确性,就像任何使用足够强大的模型的分类器一样,主要受到用于学习模型参数的数据的限制。虽然ICLabel训练集很大,包含来自许多类型的实验、放大器、电极蒙太奇和其他影响脑电图记录的重要变量的IC示例,但数据集不包含所有类型的脑电图数据的示例。例如,婴儿是ICLabel数据集中缺失的一个群体。由于婴儿脑电图在空间和时间上与成人有很大差异,第4.1节所示的结果可能不适用于婴儿脑电图。这个问题是由ICLabel分类器测试版的用户特别提出的,他在对婴儿记录的EEG数据集中的Brain IC进行分类时,有证据表明其性能低于标准。虽然这是目前唯一报道的分类器可能出现结构性故障的情况,但可能存在更多与ICLabel数据集中没有充分表示的任何其他主题或特定记录设置有关的情况。ICLabel分类器可能无法解决的另一个可能的数据集来源是患有重大脑病理的受试者。尽管ICLabel数据集中包括癫痫患者、注意力缺陷多动障碍(ADHD)儿童和自闭症儿童的记录,但其他疾病的受试者可能不被代表。

另一个问题是用于创建IC头皮地形的电极位置数据的质量。理想情况下,脑电图数据应该伴随着精确的3D电极位置数据,但ICLabel数据集包括一些仅提供模板电极位置数据的记录。所有这些变异性都对基于IC头皮地形的IC分类器的训练提出了挑战。此外,在如此大量的IC头皮地形上进行训练应该进一步缓和这种电极位置误差在数据中的影响。

6. 总结

ICLabel分类器是一种新的EEG独立成分(IC)分类器,与其他公开可用的EEG IC分类器进行了系统比较,显示出其性能更好或与当前技术状态相当,而所需的计算时间约为十分之一。该分类器将IC分类估计为横跨七个IC类别的组成向量。它分类成分的速度允许对在线分解的脑电图数据进行详细的、接近实时的分类。通过对六个候选版本进行交叉验证比较,选择ICLabel分类器的体系结构和训练范式。ICLabel项目的一个关键组成部分是ICLabel网站(https://iclabel.ucsd.edu/tutorial),该网站收集了来自世界各地脑电图研究人员提交的分类,以标记ICLabel训练集的一个不断增长的子集。不断发展的IC特征的ICLabel数据集可在https://github /lucapton/ICLabel- dataset获得。ICLabel分类器可以通过EEGLAB扩展管理器和https://github.com/sccn/ICLabel下载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值