时变功能脑网络的连边中心分析及其在孤独症中的应用

脑区之间的相互作用随着时间的推移而变化,可以用时变功能连接( tvFC )来表示。常用滑动窗口计算tvFC但其时间分辨率低。另一种方法是使用最近提出的以连边为中心的方法,该方法能够追踪脑区对之间共波动模式的每时每刻变化。在这里,我们首先研究了连边时间序列的动态特征,并将其与滑动窗口tvFC (sw-tvFC)中的动态特征进行了比较。然后,我们使用连边时间序列对孤独症(ASD)和健康对照(CN)被试进行比较。我们的结果表明,相对于sw(滑动窗口)-tvFC,连边时间序列捕获到了观看电影过程中被试间同步的快速和突然的脑网络波动。研究第二部分的结果显示,在CN和ASD中,连边时间序列的脑区共波动中的峰值振幅的大小是相似的。然而,与CN相比,RSS信号的波谷持续时间在ASD中更长("root sum square"(RSS)是一种数学计算方法,它通过对一系列数值进行平方求和,然后对结果取平方根来计算。该方法通常用于计算多个独立变量组合在一起产生的总体效应。RSS用于估计大脑区域集体波动的峰值幅度。简单来说,RSS是一种衡量不同变量组合影响强度的方法)。此外,比较高幅值共波动的摆角可得,网络内连边在CN中表现出更大的波动幅度。我们的研究结果表明,由连边时间序列捕获的高幅值共波动提供了关于功能脑动力学中断的细节,这些细节可能被用于开发新的精神障碍生物标志物。本文发表在Neuroimage杂志。

1 引言

人脑本质上是一个复杂系统,可以建模为功能连接脑网络(Bassett and Sporns, 2017; Bullmore and Sporns, 2009)。在实际应用中,功能连接( Functional Connectivity,FC)是由脑区功能磁共振成像(Functional Magnetic Resonance Imaging,fMRI)血氧水平依赖成像( BOLD )时间进程的皮尔逊相关性计算得到的,通常在没有明确的任务指令即静息状态下记录(Friston, 1994; Horwitz, 2003)。越来越多的研究利用FC将脑网络组织中的个体差异与认知(Shirer等 2012)、发育(Gu 等2015)、疾病(Fornito等2015)联系起来。

在大多数应用中,FC是使用整个扫描过程中的数据来计算的,从而产生一个单一的连接矩阵,其值表示成对脑区之间的平均连接强度(Rogers 等2007)。然而,大脑宏观尺度上的功能组织在更短的时间尺度上以秒为单位变化(Gao等2020; Hutchison等2013; Zalesky 等2014)。为了捕获这些变化,许多研究使用动态或时变FC (tvFC)在更短的时间间隔内计算FC (Lurie等2020)。在大多数情况下,tvFC采用滑动窗口法进行计算。在这种方法中,FC仅使用落在固定持续时间窗口内的时刻进行计算。窗口设置好了一些参数,过程重复。最后,结果是一系列FC的计算结果。

滑动窗口时变功能连接(sw-tvFC)已被广泛用于表示大脑网络组织的时变变化,也用于研究认知过程中大脑网络结构的波动(GonzalezCastillo and Bandettini, 2018; Kucyi and Davis, 2014)。此外,tvFC已被证明可用于产生新的生物标志物(Barttfeld等2015; Kucyi and Davis, 2014; Rashid等2014; Scheid 等2021)。

尽管滑动窗口方法应用广泛,但还是有一些局限性。首先,它们要求选择一系列参数,包括窗口持续时间、形状和连续窗口之间的重叠量(Hindriks等2016; Leonardi and De Ville, 2015; Shakil 等2016; Zalesky and Breakspear, 2015)。这些参数的选择是非常重要的,并且通常影响得到的连通性模式。这些参数还可能在时变FC的计算中引入噪声,例如混叠效应。也许最重要的是,滑动窗口方法无法实现及时准确地将FC的变化定位到特定的时刻。窗口本身的性质意味着FC反应该区间内所有点的贡献。这种局限性可以通过基于核的时变功能连接(例如,高斯核)等替代方法来解决(Faghiri等2021; Iraji等2020) ,这种方法可以在时间上考虑相邻时间点对特定时刻的贡献。然而,这种方法也依赖于参数的选择,如依赖于核方差的选择。总体而言,这些局限性对使用滑动窗口技术计算和解释时变FC是个挑战(Iraji等2020; Lurie等 2018)。

最近,我们提出了一种新颖的、以连边为中心的计算时变FC的方法(Esfahlani等2020; Faskowitz等2020)。该方法将FC精确地分解为每个时间点的贡献,从而得到跨时间脑区间共波动的逐帧值,我们称之为共波动或连边时间序列(ETS)。该方法的一个关键特点是在不指定参数或不需要进行任何加窗的情况下计算ETS(连边时间序列)。因此,与滑动窗口方法相关相比减少了许多限制。虽然ETS和sw-tvFC都计算FC的时变变化,但它们是两个不同的结构:一个度量脑区之间的瞬时共波动(ETS),另一个度量脑区之间的相关性(sw-tvFC)。自提出以来,ETS一直被用来研究个体差异(Betzel等2021) 以及大脑系统的起源(Sporns等2021),并且它的解剖学基础已用计算机模拟 (Pope等, 2021)进行了检验。然而,ETS的结果尚未与滑动窗口技术进行系统的比较。此外,由于连边时间序列代表了一个新的结构,它们在连接大脑和行为方面的效用仍然不清楚。

在此,我们解决这些问题。在文章的第一部分,我们对ETS和sw-tvFC的时态性质进行了系统的比较。我们的研究结果表明在sw-tvFC中看不到ETS的两个主要特征。首先,ETS在静息状态下表现出快速和爆发性的波动,表现为自相关性降低和从一种脑状态到另一种脑状态的转换更加频繁。此外,在观看电影的条件下,这些共波动在被试间是同步的。其次,与sw-tvFC相比,ETS的共波动在高、低振幅之间的相似性较低,表现为更高的峰值振幅和更短的波谷持续时间(两个局部极小值之间的帧数)。基于ETS的这两个重要特征,在文章的第二部分,我们研究了自闭症 (ASD)和健康对照(CN)被试在观看电影时脑区共波动的差异。我们的研究结果表明,总体而言,ASD和CN的脑区共波动的峰值幅度相似,但ASD的波谷持续时间更大。此外,对个体ETS的详细分析表明,与ASD相比,网络内连边在CN中表现出更高的峰值共波动。

2 材料和方法

2.1 数据

我们分析了29名CN和23名ASD个体在静息态和观看电影条件下多次扫描的fMRI数据。本研究用于扫描1、2、3、4的被试人数依次为29 CN、23 ASD;29 CN,23 ASD;26 CN,20ASD;以及25个CN,21个ASD 。该数据集的详细信息包括被试特征、数据获取、预处理流程等见Byrge和Kennedy (2020)。

2.2 图像预处理

2.2.1 自然刺激(Naturalistic stimuli)

所有电影均从Vimeo获取。它们是基于多个标准选择的。首先,为了保证电影的刺激性,我们排除了任何具有较宽的戏剧版本的电影。其次,我们排除了具有潜在不良内容的电影,包括裸体、咒骂、吸毒等。最后,我们排除了故意令人震惊的事件导致扫描仪过度移动的电影。

每部电影持续约1 ~ 5 min。每次扫描包含观看4 ~ 6部电影,类型包括纪录片、戏剧、喜剧、体育、神秘和冒险类型。

对所有的脑区对重复这个过程,得到一个逐个节点的相关矩阵,即FC的计算值。如果有N个节点,则该矩阵的维度是N×N。为了计算连边中心网络,我们修改了上述方法,使得我们只计算两个时间序列的元素乘积,并去掉了计算均值的步骤。该操作将产生一个长度为T的向量,其元素代表脑区i和j在每个时刻共波动幅度。更具体地说,向量中的正值反映了脑区i和j的活动同时增加或减少,而负值则反映了其活动大小的相反方向(一个增加而另一个减少,反之亦然)。同理,如果i或j任何一方增加或减少,而另一方的活跃度接近0,则对应的乘积量将接近于零。对于每一对脑区(网络节点),可以很容易地计算出一个类似的向量,从而得到一组连边时间序列。对于N个脑区,将得到N*(N-1)/2个条连边时间序列值,每个长度为T。

基于滑动窗口得到的tvFC比实际fMRI BOLD时间序列短,而ETS与fMRI BOLD时间序列长度完全相同。因此,为了比较sw-tvFC和ETS的全脑共波动和被试间相似性,我们使用线性插值方法对(即350个时间点)时间序列进行重采样,计算两个插值时间序列之间的相似性。

2.5 基于核函数的时变功能连接

基于核函数的时变功能连接使用核函数(即高斯核),通过考虑相邻时间点对每个时间点瞬时相关性,得到平滑的tvFC。这里,我们使用宽度为10 - 100的高斯核,以10为增量得到平滑的tvFC。

2.6 自相关

对于每个被试,我们计算ETS / sw-tvFC中的自相关(即lag = 100),作为t时刻全脑共波动模式与t+1,t+2,..,t+99,t+100时刻模式的相似性。我们比较了ETS和sw-tvFC中被试的平均自相关。

2.7 K-means聚类和状态转移

我们使用基于欧氏距离的k-means聚类算法对ETS/ sw-tvFC进行聚类,具体来说,我们基于给定时间点的全脑共波动模式的相似性对时间点进行聚类。对于每一个研究对象,我们得到了一个聚类的时间序列(1×T),其中每个元素在给定时间点上的聚类指标(即脑状态)。在获得聚类后的连边时间序列后,我们量化了随时间变化的状态间/状态内的转移数量。我们使用k = 5,10和15作为初始聚类数。

2.8 波谷到波谷持续时间和峰值振幅度量

对于每一个被试,我们计算每个给定时间点上所有连边时间序列的均方根(RSS),从而得到单个时间序列。接着,我们对RSS信号中的波谷进行了识别,并定义了峰值幅度(两个波谷之间的最高峰)和波谷持续时间两个指标。RSS信号中的波谷(这里,指局部极小值)被定义为其值低于其两个直接邻居的幅值的时间点。我们使用RSS信号的平均峰值幅度和波谷-波谷持续时间来比较ETS和sw-tvFC。采用同样的方法比较CN和ASD在这些指标方面的差异。

2.9 噪声与tvFC的相关性

我们进行了事后校正分析,以验证头部运动和噪声在计算RSS信号的波谷-波谷持续时间和峰值幅度度量中的影响。对于每一个被试,我们从波谷持续时间和峰值共波动幅度度量中回归出两个头部运动变量(例如,扫描仪运动和逐帧位移的导数)的平均值,并比较ASD和CN之间的残差。更具体地说,我们从峰值对应的时间点的峰值幅度测量中回归出头部运动变量的平均值。对于波谷-波谷持续时间测量,我们取每两个波谷之间的头部运动的平均值,并从波谷-波谷持续时间测量中回归出头部运动。最后,我们比较了ASD组和CN组的残差。

2.10 模块度最大化

模块度最大化是一种检测网络数据中社团结构的启发式计算方法。它将社区定义为内部联系密度最大程度超过预期的群体要素。在此背景下,我们定义连接的期望权重等于所有模式对之间的平均相似度。Louvain算法的模块度最大化是不确定的,并且依赖于初始条件,可以得到不同的结果。据此,我们用不同的随机种子运行算法1000次。我们使用无监督聚类算法来解决这些不同种子之间的差异性,在该算法中,我们迭代地对模块共同分配矩阵进行聚类,直到收敛。由此产生的分区将每个共波动模式分配给不重叠的社区。

3 结论

我们将ETS和sw-tvFC方法应用于29名CN和23名ASD被试在静息态和被动观看电影条件下多次采集的fMRI数据(Byrge and Kennedy, 2020)。计算ETS和sw-tvFC的总体流程及其差异如图1所示。在计算出ETS和sw-tvFC后,首先,在连边时间序列和滑动窗口tvFC的比较中,我们使用的数据来自CN组并比较ETS与sw-tvFC的性质,包括全脑共波动动力学,这些共波动在被试间的同步性,以及高、低振幅连边波动的关系。接下来,在孤独症的连边时间序列中,我们使用ETS研究ASD和CN组脑区共波动模式的差异。

图1 滑动窗口时变FC (sw-tvFC)网络和连边时间序列(ETS)构建的一般流程。

(a)ETS计算为两个节点时间序列对应值的点乘,而在sw-tvFC中,首先将时间序列等分(窗口),通过计算每个窗口内时间样本之间的相关性来计算连边。

(b)计算所有脑区对的ETS,得到N*(N-1)/2*T矩阵。对于ETS,该矩阵提供了所有脑区对之间的时刻间共波动的详细图,而对于sw-tvFC,由于加窗过程,该结果不是精确的。

(c)全脑共波动可以由每个给定时间点所有连边波动的平方根(root sum square,RSS)计算。与sw-tvFC相比,在ETS中,高幅值的共波动更精确地被捕获。

3.1 连边时间序列与滑动窗-tvFC的比较

3.1.1 全脑共波动动力学

为了计算ETS和sw-tvFC的全局性质的差异,我们首先思考这两种方法计算的全脑共波动模式有多相似?为了回答这个问题,我们基于每个被试的静息态fMRI BOLD时间序列计算了ETS和sw-tvFC。然后我们将时变连边权重的全集矢量化,并通过线性插值重采样以确保ETS和sw-tvFC计算包含相同数量的时间点后,我们通过时间矩阵将整个连边矢量化并计算方法之间的相似性(图2 (a))。我们对窗口大小从10到100帧以10个(每帧= 0.813 s)的增量构建的sw-tvFC重复这个过程。我们发现sw-tvFC和ETS是中度相关的((r = 0.35 ;窗口大小= 20 ;其他窗口尺寸的细节可以在图2 (a)中找到)),这表明虽然这两种方法大致捕获到了类似的共波动模式,但仍然存在好多不可解释的差异。单独扫描的结果见图S1。

图S1 静息状态下所有个体扫描的连边时间序列(ETS)与滑动窗口时变功能连接(sw-tvFC)的关系。

条形图表示在静息态下(单独扫描和所有扫描合并在一起),连边时间序列中所有边与被试sw-tvFC之间的平均Pearson相关性。颜色的阴影代表移动窗口(s)的大小。对于s = 1,ETS和sw-tvFC在窗口大小= 20时最相似,而对于其他s值,随着窗口大小的增大,相似度增大。

为了更好地理解为什么ETS和sw-tvFC之间的全局相关性不强,为什么它们的对应关系在中间窗口大小时达到峰值,我们进行了更详细的研究,重点关注窗口长度的作用。我们假设两个截然不同且相互竞争的因素导致峰值相关性出现在中间窗口大小。具体来说,我们假设当窗口尺寸非常小时,sw-tvFC将能够捕获到连接度的快速波动,但由于样本数量相对较少,连接权重的计算会不准确。相反,更长的窗口提供了更准确的连接权重,但牺牲了时间特异性。为了检验这一点,我们系统地改变窗口的持续时间,发现对于非常短的窗口,所有时刻的连接权重直方图都是双峰的(图2 (b))。这与ETS的典型连接权重相反,它们是单峰的,通常以零为中心(图2 (b))。这种分布的不匹配很可能解释了为什么对于短窗口,ETS和sw-tvFC表现出较差的对应关系。另一方面,随着窗口长度的增加,网络随时间的变化很小,表明它们无法捕获ETS中观察到的"突发"动态。总体而言,这些结果既解释了sw-tvFC与ETS在全脑尺度上整体的弱对应关系,也解释了为什么峰值相似出现在中间窗口大小(详见图S2)处。我们将ETS与平滑tvFC (使用高斯核)进行了类似的比较,如图S3所示。接下来,我们思考sw-tvFC相对于ETS在多大程度上存在对先前网络状态的记忆。为了回答这个问题,我们使用k-means聚类算法,根据全脑共波动模式在不同时间点上的相似性,将时间上聚类成不重叠的团簇(Allen等2014; Barttfeld等2015)。由于我们的分析是在个体水平上进行的,因此我们使用多个k值(参见图S6中单个被试的最优k值。这里我们阐述了k=5和使用来自所有扫描的被试的结果;图S4中k的其他值的结果定性类似)进行分析。我们利用这些聚类计算了所有脑状态对之间的转移概率(使用这两种方法的一个被试的聚类模式示例如图S7所示),发现ETS比sw-tvFC更频繁地从一个脑状态转移到另一个脑状态(t检验, p < 0.001 ;图2 (b)) ,单独扫描的结果如图S4所示。这可能是由于相比于sw-tvFC,ETS中存在快速和突发的网络级波动,预期平均自相关性降低,且较大频率的功率谱密度变化率更高。

图S2 静息态下连边时间序列(ETS)与滑动窗口时变功能连接(sw-tvFC)的全局关系。

(a)基于全脑共波动的ETS和sw-tvFC ( Pearson相关系数)的全局相似性。

(b)sw-tvFC连接权值的直方图(未经Fisher变换),对于非常小的窗口,连接权值的直方图是双峰的,不同于ETS。使用Fisher变换对sw-tvFC权重进行归一化后,连接权重的直方图呈现单峰分布,但具有高度变异性。

(c)sw - tvFC在t时刻与所有时间点的平均相似度,对于非常大的窗口,平均相似度变得非常大,这意味着时间特异性也可能降低。

图S3 静息状态下连边时间序列(edge time series,ETS)与高斯核平滑滑动窗口时变功能连接(smoothed-tvFC)的全局关系。

基于核函数的时变功能连接使用核函数(即高斯核),通过考虑相邻时间点对每个时间点瞬时相关性的贡献,得到平滑的tvFC。(a)基于全脑共波动的ETS与smoothed-tvFC (Pearson相关系数)的全局相似性。(b)平滑后的tvFC连接权值直方图呈单峰分布,且宽度值(σ2)越大,单峰分布峰值越大。(c) smoothed-tvFC在t时刻与所有时间点的平均相似度,对于非常大的宽度,平均相似度变得非常大,这意味着时间特异性也可能降低。

图S4在静息态下,分别计算了连时间序列(ETS)和滑动窗口时变功能连接(sw-tvFC)的自相关和状态转移概率。

显示了ETS和sw-tvFC (即窗口大小(w = 20))的自相关性。ETS表现出更低的自相关性,表明存在高振幅的共波动(t检验, * p < 0.001)。这在状态转换图(b)中也很明显,与sw-tvFC (t检验, * p < 0.001)相比,ETS具有更高的状态间转换和更低的状态内转换。使用k-means聚类算法(k =初始聚类数)基于全脑共波动定义每个给定时间点的状态。

图S5 连边时间序列(ETS)和滑动窗口时变功能连接(sw-tvFC)的傅里叶频率分析。

对于每个被试,我们得到了平均的连边时间序列/ swtvFC跨连边的功率谱密度减去其均值。ETS (蓝色)中被试间的平均功率谱密度比sw-tvFC (红色)具有更低的速率(t检验; p值< 0.0001),表明ETS中存在高幅值的协同波动。

图S6 聚类分析中确定最佳聚类数的方法。

每一行代表常规标准,其定义为不同k值下个体样本到其最近聚类中心的距离平方和。由于我们的聚类分析是在个体被试水平上进行的,因此最优k值是跨被试可变的。因此,我们采用多个k值进行聚类分析,以保证结果的可靠性。

图S7 连边时间序列(ETS)和滑动窗口时变功能连接(sw-tvFC)的聚类模式的例子。

(a)某被试在ETS / sw - tvFC中随时间变化的状态识别示例。利用k-means聚类算法(k =初始聚类数),基于全脑共波动定义每个时间点的状态。(b)每个聚类的平均共波动模式。(c)团簇的相似度(Pearson相关系数),其中ETS识别的状态与sw-tvFC相比相似度较低。

总的来说,这些结果表明,与sw-tvFC相比,ETS捕获了不同脑区之间的共波动模式。我们的结果还表明,与sw-tvFC相比,ETS捕获了更快、更"爆发性"的网络动力学,其中网络状态突变更频繁,时间尺度更快。进一步地,这些结果符合滑动窗口的使用可能导致网络轨迹在时间上平滑的假设,可能会掩盖网络在短时间尺度上的快速重构。

图2 连边时间序列(ETS)与滑动窗口-时变功能连接(sw-tvFC)的关系。

(a)计算每个被试在静息态下的ETS和sw-tvFC。对ETS和sw-tvFC进行重采样,保证它们包含相同数量的时间点。然后,将这两种方法计算的时变连边权重的全集向量化并计算其相似度。Bar plot表示ETS和sw - tvFC中所有连边之间的平均Pearson相关性。(b) ETS和sw-tvFC中连接权值的概率分布。在ETS中,连接权值的直方图为单峰(每一行代表一个被试),而在sw-tvFC (所有扫描的受试者平均概率分布)中,对于非常小的窗口,连接权值的直方图为双峰且与ETS不同。(c)全脑共波动随时间的状态转换。与sw-tvFC相比,ETS表现出更高的状态间跃迁和更低的状态内跃迁,表明存在高幅值的协同波动。每个给定时间点的状态是基于全脑共波动定义的。

3.1.2 被试之间全脑共波动模式的同步性

在上一节中,我们研究了ETS中存在的快速和突发的波动,强调了这一性质是它区别于sw-tvFC的主要特点之一。这些高幅波动在以往的论文中被称为"事件"(Esfahlani等2020),这个"事件"并不常见,在以前的工作中,已证明与扫描仪中的头部运动无关(Esfahlani等2020; Betzel 等2021)。因此,它们在提供对静息态和观看电影条件下正在进行的认知过程的见解方面可能是重要的。

在本节中,我们研究了这两种方法捕获的共波动模式在被试间的同步性。为了解决这个问题,我们基于静息和看电影条件下脑区的共波动计算了被试间相似性。更具体地说,脑区的共波动计算为每个给定时间点所有脑区(连边)对之间共波动的平方根(root sum square,RSS)。我们发现,与sw-tvFC相比,在观看电影和静息状态下,ETS (特别是那些具有高振幅的)的共波动模式在被试间是一致的(图3(a))。这表现为在观看电影条件(t检验; p < 0.001 ;图3 (b))和(c)时,ETS的被试间相似性高于sw-tvFC。

图3 比较连边时间序列(ETS)和滑动窗口-时变功能连接(sw-tvFC)在识别静息态和观看电影条件下被试一致的共波动模式。

(a)刻画了观看电影和静息态下每个被试的插值连边时间序列的均方根(RSS)。当比较两种方法的静息态和观看电影条件时,在观看电影条件下,对于ETS,RSS模式特别是高RSS值(以红色显示)是一致的。(b)显示了ETS (p < 0.0001)中ISS较高的观影条件下基于RSS模式的被试间相似性(ISS)。(c)展示了单个被试看电影时扫描结果和所有被试看电影扫描结果的ISS值(图中b中矩阵上对角线上的元素)的分布,其中ETS显示出比sw-tvFC更高的ISS。

3.1.3 全脑在波峰和波谷的共波动模式

在上一节中,我们证明了ETS提供了对共波动模式的同步计算值,特别是在被试之间的高振幅波动模式,这表明它们对整体连通性模式的独特贡献。在本节中,我们进一步研究了这些高幅值共波动的作用及其与低幅值共波动的区别。为了做到这一点,我们定义了RSS信号的波谷持续时间和两个波谷之间的峰值协同波动幅度(图4(a)),它可以计算得出高振幅和低振幅共波动之间的关系。我们发现,与sw-tvFC相比,ETS表现出更高的峰值和更短的波谷-波谷持续期( (t检验, p < 0.001 ;图4 (c)) ),这进一步表明ETS随时间的变化表现出快速波动。此外,我们计算了波峰和波谷之间的相似性作为波峰和波谷处全脑共波动的相关系数。我们的结果表明,与sw-tvFC (t检验, p < 0.001 ;图4 (c)))相比,ETS的共波动在波峰和波谷之间的相似性较低。我们将ETS与平滑tvFC (使用高斯核)进行了类似的比较,如图S9所示。

图4 通过均方根(root sum square,RSS)信号度量全脑共波动模式中的波峰波谷关系。

(a)显示了RSS信号中峰值幅度和持续时间度量的计算过程。凹点是其振幅低于其两个相邻的时间点。(b)刻画了一个被试中波峰波谷关系的例子。(c)比较ETS和sw-tvFC (w = 10~100帧,增量为10)的波峰波谷关系。

图S9静息态和被动观看电影条件下全脑共波动模式中的峰谷关系。

(a-b)比较静息和被动观看电影条件下连边时间序列的峰谷关系与平滑后的时变功能连接在高斯核(σ210 ~ 100 ,增量为10)下的峰谷关系。基于核函数的时变功能连接利用核函数(即高斯核),通过考虑相邻时间点对各时间点瞬时相关性计算的贡献,得到平滑的tvFC。

3.2 孤独症的连边时间序列

3.2.1 孤独症与健康对照的连边共波动

在上一节中,我们讨论了ETS和sw-tvFC在捕获功能脑网络时变特征能力方面的差异。我们的研究结果表明,ETS在追踪共波动幅度的快速转变方面是有效的,表现为相对于sw-tvFC更大的共波动幅度和更短的波谷持续时间。在本节中,我们使用ETS来研究随时间变化全脑和连边水平的共波动。更具体地说,我们使用先前定义的波谷持续时长和波峰共波动幅度两个指标来研究被动观看电影过程中ASD和CN的差异。

首先,我们研究了ASD和CN脑区的共波动在波谷-波谷持续时间和峰值共波动幅度上的差异。为此,我们计算了ASD组和CN组每个被试的平均波谷持续时间和RSS信号的峰值幅度。我们的结果,如图5 (a)所示,表明CN和ASD (t检验, p = 0.97)之间的峰值共波动模式相似。然而,仔细观察发现两组之间存在细微的区别。具体来说,我们发现与CN (t检验, p = 0.005 ;图5 (a))相比,ASD的波谷持续时间更长。为了确保这些差异不是由头部运动引起的,我们进行了事后校正分析,其中我们从波谷持续时间和峰值共波动幅度中回归出平均头部运动(例如,扫描器内运动和逐帧位移的导数),并比较了ASD和CN之间的残差。该分析结果与原始研究结果一致,提示ASD与CN在波谷间时长(t检验, p = 0.01)上存在差异,而在波峰振幅(t检验, p = 0.35 ;图S11)上无差异。我们采用sw-tvFC方法进行了类似的分析(图S10)。我们发现,当使用全扫描数据时,除了w = 10 (t检验; p < 0.05)外,在所有窗口大小(w)中,CN组的峰值高度都显著大于CN组。然而,除w = 50外,ASD和CN组的波谷-波谷持续时间在任何窗口大小上都没有显著差异。进行事后校正分析和将波谷到波谷持续时间和波峰高度度量的头部运动变量的平均值进行回归后,使用部分窗口大小(20、40、50、90 , t检验; p < 0.05)时,ASD组和CN组之间的波谷-波谷持续时间才有显著差异。总体而言,滑动窗口方法在捕获ASD和CN组跨扫描和校正分析前后的差异方面并不一致。

图5 孤独症(ASD)和对照(CN)被试在观看电影条件下的连边时间序列(ETS)。

(a)ASD组和CN组波峰和波谷间持续时间的平均值。箱图中的每个点显示了一个被试在扫描过程中的峰值/谷值持续时间的平均值。

(b)CN和ASD (CN减去ASD)连边峰值波动幅度的平均差异。

(c)ASD与CN在(p = 0.0075 , FDR= 0.05)时峰值波动幅度不同的连边。

(d)基于Yeo 17功能网络(Yeo等2011)排序的图c所示边。每个单元格代表显著连边数量(蓝色(CN> ASD)),红色(ASD>CN) )。

(e)在图c中显示连边的可视化,选择p值进行可视化。扫描2中CN和ASD峰值时间点的(f,g)相似性和社区结构。基于全脑共波动的峰值时间点有三个聚类。每个聚类及其第一主成分的平均峰值波动如图所示。

图S10 孤独症(ASD)和正常对照(CN)被试观看电影时的滑动窗口时变功能连接(sw-tvFC)。

(a) ASD (红杠)和CN (蓝杠)组波峰和波谷持续时间的平均值。每个横条代表不同窗口大小下sw-tvFC中被试间平均的波峰/波谷-波谷持续时间。

(b)被试sw-tvFC中波峰/波谷-波谷持续时间度量的平均残差。我们进行了事后运动校正分析,将头动变量(例如,扫描仪运动和逐帧位移的导数)的均值从谷间持续时间和峰值共波动幅度测量中回归出来,并比较了孤独症(ASD)和对照(CN)被试之间的残差。

图S11 采用连边时间序列(edge time series,ETS)度量被动观影条件下头部运动对脑区共波动的影响。

我们进行了事后校正分析,将头动变量(例如,扫描仪运动和逐帧位移的导数)的均值从波谷到波谷的持续时间和峰值共波动幅度测量中回归出来,并比较了自闭症 (ASD)和对照(CN)被试之间的残差。箱图中的每一个点显示了一个被试在扫描过程中的波峰/波谷持续时间测量的平均残差。这些结果与最初的发现一致,表明ASD和CN在波谷-波谷持续时间(t检验, p = 0.01)上存在差异,而在峰值振幅(t检验, p = 0.2)上不存在差异。

接下来,我们在群体水平上考察ASD和CN个体扫描中的波峰在空间相似性(全脑共波动)方面的相关性和社区结构。具体来说,我们在每次扫描中确定了被试平均连边时间序列中的峰值振幅。然后我们计算它们的空间相似性并使用社区检测算法(即,模块度最大化)对它们进行聚类。我们发现,在CN和ASD组中都有三个团簇(扫描2),与ASD相比,CN的整体连边显示出更高的平均峰值波动(每个聚类中跨时间点的平均振幅) (图5 (f)和(g))。其他扫描的结果在图S14 ~ S16中展示。

最后,我们对ASD和CN的高振幅共波动进行了摆动倾角比较。我们的结果表明,网络内连边,即属于同一大脑系统的链接节点,在CN (t检验, p < 0.008 , FDR= 0.05中表现出更大的幅度波动;图5 (b)-(e) )。本节展示的结果是使用来自所有扫描的所有被试的数据生成的。个体扫描的结果在图S12和S13中展示。

图S12 孤独症 (ASD)和健康对照(CN)在被动观看电影条件下(个体扫描)的连边时间序列。

(a)计算ASD和CN被试的波峰和波谷持续时间。(b) CN和ASD (CN减去ASD)连边峰值波动幅度的平均差异。(c) ASD与CN (扫描1和2 ; p = (0.0054,0.00034))峰值波动幅度不同的连边,错误发现率= 0.3 )。图c显示的(d,e) Edges基于Yeo 17功能网络进行排序。每个点代表显著连边的数量(蓝色(CN > ASD),红色(ASD>CN))。

图S13 孤独症(ASD)和健康对照(CN)在观看电影条件下的连边时间序列(个体扫描)。

(a)计算ASD和CN被试的波峰和波谷持续时间。(b) CN和ASD (CN减去ASD)连边峰值波动幅度的平均差异。(c) ASD与CN (扫描3和4 ; p = (0.012 , 0.0067)峰值波动幅度不同的连边,错误发现率= 0.3)。图c显示的(d , e) Edges基于Yeo 17功能网络进行排序。每个点代表显著连边的数量(蓝色(CN>ASD),红色(ASD>CN))。

图S14 孤独症(ASD)和对照(CN)被试在观看电影条件下峰值波动的社区检测(扫描1 )。

a、b)分别为CN和ASD中峰值时间点的相似性和社区结构。基于全脑共波动的峰值时间点有三个聚类。每个聚类及其第一主成分的平均峰值波动如图所示。

图S15 社区检测孤独症(ASD)和对照(CN)被试在观看电影条件下的峰值波动(scan 3)。

a、b )分别为CN和ASD中峰值时间点的相似性和社区结构。基于全脑共波动的峰值时间点有三个聚类。每个聚类及其第一主成分的平均峰值波动如图所示。

图S16 孤独症(ASD)和对照(CN)被试在观看电影条件下峰值波动的社区检测(扫描4 )。

a、b )分别在CN和ASD中峰值时间点的相似性和社区结构。基于全脑共波动的峰值时间点有三个聚类。每个聚类及其第一主成分的平均峰值波动如图所示。

4 讨论

本文将ETS的动力学性质与常用计算tvFC的方法- -滑动窗口分析法进行了比较。我们分几个步骤进行了比较,包括状态转换、被试间的共波动同步性等。我们发现,ETS捕获了更快、突发的网络动态,这在sw-tvFC中往往是不可行的,因为加窗过程会导致误差。基于ETS的这一重要特征,我们使用ETS来比较ASD组和CN组的共波动模式。我们发现,在全脑共波动水平上,CN和ASD表现出相似的峰值振幅共波动水平,但ASD表现出更高的波谷持续时间。

4.1 连边时间序列具有快速、突发的网络动态性

越来越多的研究对网络结构的时变变化进行建模,以研究网络动力学的快速变化,并将其特征与性状、认知和临床状态的个体间变异联系起来。虽然有许多技术可用来计算和研究时变网络,但最常见的是滑动窗口方法。然而,这种方法需要研究者定义几个关键参数,每个参数都会影响得到网络的特性。此外,滑动窗口的使用,包括多个连续的样本,都不能使网络定位到特定的时间点。

然而,有几种方法可以用来解决部分问题(Li等 2021; Liu and Duyn, 2013; Liu等2018)。在这些方法中,最近提出的是"连边时间序列"。该方法将FC分解为其精确的每个时间点贡献,在每个时间点生成节点对之间共波动幅度的值,从而避免了滑动窗口的需要。尽管该方法已在多篇文献中使用(Esfahlani等2020; Sporns 等2021; Betzel 等2021),这些特征在tvFC的滑动窗口计算中通常没有研究,例如,共同活动的爆发,没有直接比较连边时间序列和滑动窗口tvFC。

我们的研究填补了文献中的这一空白,度量了连边时间序列和滑动窗口tvFC中常见的几个量。我们发现,总体而言,这两种方法得到的时变网络估计是全局相似的,并且在使用较短的(但不是最短的)窗口时长计算滑动窗口tvFC时,相似性达到了峰值。这个峰值的位置可能反映了网络重构精度和时间精度之间的权衡,网络重构精度随样本数量的增加而提高,而时间精度随样本数量的增加而提高。我们还发现连边时间序列比sw-tvFC具有更短的"记忆性",说明时间自相关不仅比sw-tvFC更快地衰减到基线值,而且基线本身也建立在较低的水平上。最后,我们使用一种常见的聚类技术来定义网络"状态",并计算从一个状态转移到另一个状态的概率。我们发现,向其他状态的跃迁在连边时间序列中更常见。

这些结果是可预期的,并且可能是由于使用sw-tvFC和ETS方法计算时变变化的几个关键差异。首先,在sw-tvFC方法中,使用每个窗口内的所有样本,基于相关系数计算两两脑区之间的功能连接强度。这使得脑区之间短暂的共波动的贡献最小化,从而平滑地计算随时间变化的功能连接和状态转换。其次,sw-tvFC使用原始的、非标准化的节点时间序列作为输入值。虽然这可能有助于识别随时间变化的统计上不同的大脑状态(Leonardi and De Ville, 2015),但它并没有提供状态转换时间的准确信息( Shakil等2016)。在ETS中,这些问题通过计算大脑区域之间的共波动幅度作为标准化(z-scored)节点时间序列在逐帧尺度上的点积来解决。这使得从整个扫描中利用时间信息(即均值和方差),并计算两个节点在其各自的均值之上或之下共同偏转的程度这可以得到对时变变化的更可靠的计算,以及对随时间变化的状态转移的更精确的计算(例如,从高幅值到低幅值的共波动的转变,以及它们的具体时间信息)。然而,也应该注意到,在sw-tvFC方法中,ETS并没有从多个样本的平均中受益,还可能会受噪声影响。尽管在这里我们直接比较了ETS和sw-tvFC,但我们注意到,考虑到它们各自的计算方法,它们隐含地度量了不同的时变结构,这可能解释了这两种度量之间相对较差的一致性。具体来说,sw-tvFC旨在度量脑区间相关性,其以区间[0,1]为界,并且需要(至少)三个样本。另一方面,ETS计算瞬时共波动。也就是说,它计算在单个帧的时间尺度上,两个脑区的活动在其各自的均值之上或之下的无界幅度。

总体而言,使用sw-tvFC和ETS方法计算的时变变化的特异性和敏感性之间存在权衡,sw-tvFC使用每个窗口适中的样本数量,以减少采样差异性的影响,同时最小化单点共波动的贡献;另一方面,ETS捕获到了个体样本层面的共波动,但并没有从平均中获益,而且可能会产生噪音。

以往使用网络时变计算的方法之一是用于脑状态检测,即根据连通性的相似性对时间点进行聚类,以识别近似跨时间重复出现的网络"状态"。原则上,用于构建ETS和sw-tvFC的方法以及关于分析流程的决策可能会对检测到的状态的特征产生影响,在未来的研究中应该进一步讨论。使用ETS,连接权重根据整个扫描上偏离基线的程度来确定(对扫描平均的均值和标准差进行z-score)。相比之下,sw-tvFC连接是基于局部相关性确定的,使用的是时间邻近帧的数据。因此,在sw-tvFC中,扫描平均的均值/方差的大偏差可以通过局部z-score有效地校正,导致时变连通性的不同计算结果,从而影响EST。

ETS和sw-tvFC对网络状态的另一种不同且可能互补的计算方式是基于聚类算法本身的参数。许多流行的聚类算法根据不同帧的网络模式之间的距离来确定聚类。当网络模式相似(距离较小)时,它们很可能被分配到相同的状态。度量指标由研究者选择,其中相关距离最为常见。然而,在计算它们之间的距离之前,z-score对全脑的连接模式进行了计算,有效地消除了平均连接和方差的差异。虽然这种决策可能对sw-tvFC计算影响不大,从帧到帧之间的共波动幅度变化相对较小,但ETS表现出"突发"行为,产生了共波动幅度随时间的重尾分布。因此,z-score可能会人为地使一个振幅相对较低的更类似于一个高振幅的"事件"。总之,在计算ETS中的大脑状态并将其与从sw-tvFC中计算的状态进行比较时必须小心。一种可能的解决方法是研究其他度量,包括一致性,通过平衡模式相似性和幅度差异来计算相似性和距离(Betzel 等2022; Betzel等2022)。

这些发现有助于我们理解和解释大脑动力学。滑动窗口描绘了一幅图像,其中大脑倾向于缓慢地遍历高维状态空间,其在t + 1时刻的状态高度依赖于其在t时刻的先前状态。相比之下,连边时间序列表现出更快的变化速率,在短时间尺度上迅速重构大脑网络,并伴有间断、高振幅的突发。然而,值得注意的是,这两种方法都在相同的数据-节点时间序列上研究。他们提供了不同的见解,突出了ETS作为传统滑动窗口方法的补充方法的潜力。

4.2 高幅值共波动与认知和行为的关联性

以往的研究考察了连边时间序列并刻画了其一些基本性质(Esfahlani等2020; Betzel 等2021),推测这些特性可能作为比较个体认知或临床状态的有效生物标志物。然而,除了有限的例外情况,这些猜测并没有得到验证。在此,作为探索性分析的一部分,我们进行了两项分析。首先,我们比较了连边时间序列和sw-tvFC在被动观看电影时捕获个体间相关性的能力。为此,我们发现当使用ETS时,与sw-tvFC相比,被试在观看电影时的全脑共波动模式(跨时间的RSS值)更相似。这一观察突出了ETS在捕获被试对刺激的共同反应方面的优势。然而,在观看电影的过程中,这些同步事件的起源需要更多的研究来理解,不管它们是由潜在的生理过程引起的,还是代表了相关结构。解决这个问题的一个方法是进行统计检验,从原始信号中去除诱发活动的影响,并研究这些同步事件是否仍然可以被观察到(Cole等2019)。解决这一问题的另一种可能是通过研究观影条件下的电影内容与诱发活动之间的联系,以及事件的个体间同步性。有几项研究表明事件发生时间的重要性(Tanner等2022) 以及它们与认知过程和过去信息再激活的相关性(Hahamy等2022)。另一方面,我们还发现,通过研究全脑在波峰和波谷的连接图谱,与sw-tvFC相比,使用ETS的波峰和波谷之间的相似性较低。总之,这些结果表明,连边时间序列提供的时间精度可以使我们更好地追踪大脑对刺激的反应,同时揭示个体之间的反应连接模式的异质性。我们推测这两个特征可以被未来研究大脑-行为关系的研究利用(Betzel等2022c; Esfahlani等2020; Jo等 2021)。尽管如此,需要指出的是,在单点共波动水平上进行脑行为研究是一项具有挑战性的任务,因为在这些研究中,结构水平共波动起源的理解是复杂的(例如,它们是由潜在的生理过程驱动,还是代表潜在的关联结构),神经时间序列和行为度量在个体之间存在异质性,而且样本数量往往较小(Marek 等2022)。

4.3 连边时间序列揭示了ASD和健康对照动力学之间的差异

本文的另一个关键发现是,与CN相比,ASD在观看电影过程中表现出更长的波谷持续时间,但在全脑共波动模式(RSS信号)中表现出相似的峰值幅度。这一观察表明,尽管ASD患者对刺激的反应与对照组相似,但他们的网络动力学比对照组更"迟缓" - -需要更长时间来上升到峰值,然后回到基线。这些迟缓动力学对于理解疾病和疾病可能具有重要的意义。例如,较慢的动力学可以阻碍或延迟大脑状态之间的转换,并且在大脑状态具有认知相关性的情况下,会影响正在进行的认知过程的时间(Cocchi等2017; Liu等2020; Medaglia等2018; Taghia等2018)。

更一般地说,这些观察强调了群体水平的差异,如果存在的话,可能不是编码在网络的结构中,而是编码在网络的动态和随时间的变化中。事实上,越来越多的研究表明,动态网络状态的转换率和占用时间等特征随着年龄的变化而变化,并在临床条件之间存在差异(Chen等2019; Ezaki 等2018; Tseng and Poppenk, 2020)。高阶网络结构,包括其系统级和模块级架构,也随时间变化,并在以往的研究中显示,以跟踪各种度量的个体差异(Hilger 等2017; Liao等 2017)。

5 局限性和未来工作

拓宽我们的发现的一个方法是扩展论文第一部分的网络状态的分析,并比较对照组和ASD组在这些状态方面的差异。以往的研究表明,这些状态经历了个体化,并可能为比较群体提供有用的、特定被试的信息(Betzel等2021)。此外,本文可以扩展到其他临床人群。事实上,存在许多大型的,公开可用的数据集,其中包括两个临床组(Gorgolewski等2017) 以及大量伴随对不同神经精神疾病评估的亚临床反应的对照人群(Essen等2013; Satterthwaite等2016)。

另一种可能的扩展是探索连边功能连接( eFC ),即连边时间序列的相关结构。先前的研究表明,这种高阶结构是高度可靠的,可以很容易地识别网络中的重叠社区。未来工作的另一个机会是使用合成例子对ETS进行更详细的研究,目的是明确区分真正"动态"的特征和静态FC矩阵的非时变特征(Ladwig等2022; Novelli and Razi, 2021)。这个问题经常通过建立统计零模型来检验,在这些模型中,数据的统计性质除了所研究的特征外都得到了保留。研究fMRI的动态特性有几种零模型,如独立同分布(i.i.d)高斯,多元自回归和相位随机化零模型,它们可以保留fMRI数据的不同性质,如峰值,协方差结构,数据的自相关性(Liégeois 等2021)。虽然已经有一些研究者研究静态FC的动态和非时变特征(Ladwig等2022; Novelli and Razi, 2021),所构建的模型往往能够较好地表征大脑的物理属性,主要关注fMRI BOLD信号中观察到的相关结构(Betzel等2016; Thompson and Fransson, 2015)。我们的工作清楚地表明,它相对于滑动窗口方法得到了不同的结果,然而,仍然不清楚这些不同是否意味着ETS优于其他方法。未来研究的另一个方向是将ETS与sw-tvFC进行比较,并与其他计算连接模式变化的方法进行比较,包括基于核的方法(Faghiri等2021; Iraji 等2020)。

在这项工作中,我们比较了滑动窗口和ETS方法计算tvFC,并进一步使用ETS方法研究了ASD和对照组人群在观看电影时的被试间相关性和组间差异。尽管本文的结果有助于将ETS与现有的计算tvFC的方法结合起来,并突出其作为研究个体差异的方法的潜力,但它有一些局限性。同时,它为未来的工作提供了机会。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值