神经科学社区开发了大量先进的脑图像分析工具,大大推动了人类脑图谱领域的发展。本文介绍了计算解剖工具箱 (CAT) —— 一个功能强大的脑形态分析工具套件,具有直观的图形用户界面,同时也可以作为脚本运行。CAT 适用于初学者、普通用户、专家和开发人员,提供了全面的分析选项、工作流程和集成管道。通过一个示例数据集,展示了可用的分析流,包括基于体素、表面以及区域的形态分析。值得注意的是,CAT 包含多种质量控制选项,并涵盖整个分析流程,包括横断面和纵向数据的预处理、统计分析以及结果的可视化。本文的主要目标是全面描述和评估 CAT,并为神经科学社区提供一个可引用的标准。本文发表在生物学研究的预印版网站:BioRxiv上。(可添加微信号19962074063或18983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,思影提供脑影像数据分析及课程,如感兴趣也可添加微信咨询)。
主要内容
大脑是人体最复杂的器官,每个人的大脑都是独一无二的。人类大脑的研究仍处于初期阶段,但图像获取和处理技术的快速进步使得对其微观和宏观结构的表征越来越精细。例如,已经被用来映射群体之间的差异(例如,年轻与老年、患病与健康、男性与女性),捕捉随时间的变化(例如,从婴儿期到老年,在神经可塑性框架内,作为临床干预的结果),或评估大脑属性(例如,长度、体积、形状的测量)与行为、认知或临床参数之间的相关性。流行的神经影像软件包包括用于分析和可视化的工具,如SPM、FreeSurfer、Human Connectome Workbench、FSL、BrainVISA、CIVET或LONI工具。
SPM(统计参数映射的缩写)是最常用的软件包之一。其可访问和可编辑的脚本库为扩展预处理和分析选项的范围提供了理想的基础。多年来,SPM激发了开发者创建利用SPM功能和界面的强大工具,这些工具不仅仅是SPM的扩展,提供了从初始数据处理到统计效果最终可视化的全分析谱的前沿预处理和分析选项。
其中一个工具是CAT(计算解剖工具箱的缩写)。CAT通过添加复杂的方法来处理和分析使用体素、表面和区域方法的结构性脑MRI数据,在人类脑图谱领域向前迈进了一大步。CAT 作为一组可访问的脚本提供,具有直观的用户界面,并使用与SPM相同的批处理编辑器,允许与SPM工作流和其他工具箱(如Brainstorm和ExploreASL)无缝集成。这不仅使初学者和专家能够在SPM环境中运行复杂的最先进的结构图像分析,还为高级用户和开发人员提供了将各种功能集成到他们自己的定制工作流和管道中的选项。
方法
应用示例
数据来源
应用示例中的数据来自阿尔茨海默病神经影像倡议 (ADNI) 数据库 (adni.loni.usc.edu)。ADNI 于2003年启动,作为一个公私合作伙伴关系,由首席研究员 Michael W. Weiner 博士领导。ADNI 的主要目标是测试是否可以将序列磁共振成像 (MRI)、正电子发射断层扫描 (PET)、其他生物标志物以及临床和神经心理学评估结合起来,以衡量轻度认知障碍 (MCI) 和早期阿尔茨海默病 (AD) 的进展。有关最新信息,请参阅 www.adni-info.org。
样本特征
在当前研究中,我们从 ADNI 数据库中编制了一个包含50名受试者的样本,这些受试者具有3D T1加权结构脑图像。具体来说,我们随机选择了前25名被分类为 AD 患者(16名男性/9名女性)(平均年龄75.74±8.14岁;平均简易精神状态检查 (MMSE) 得分:23.44±2.04)的受试者,并与25名健康对照(平均年龄76.29±3.90岁;平均 MMSE:28.96±1.24)匹配性别和年龄。所有研究参与者都获得了知情同意。所有受试者在基线(注册时的第一次扫描)和两次随访访问(第一次扫描后一年和两年)时进行了脑扫描。所有脑图像均使用 1.5 特斯拉扫描仪(西门子、通用电气、飞利浦)通过 3D T1 加权序列采集,平面内分辨率在 0.94 到 1.25 mm 之间,切片厚度为 1.2 mm。
数据处理
所有 T1 加权数据均使用 CAT12 进行处理,分别遵循 VBM、SBM(皮质厚度)和 ROI 分析的横截面(或纵向)处理流程(见图 2),根据计算形态学中的描述。对于每个受试者,横截面流仅包括他们的第一个时间点,而纵向流则包括所有三个时间点。VBM 分析的处理流生成了调制和配准的灰质分割,并使用 6 mm 高斯核进行平滑。SBM 分析的图像处理流生成了配准的点状皮质厚度测量,并使用 12 mm 高斯核进行平滑。体素基础 ROI 分析使用 Neuromorphometrics 图谱 (http://Neuromorphometrics.com/) 计算区域灰质体积;表面基础 ROI 分析使用 DK40 图谱(Desikan 等人,2006)计算区域皮质厚度。
统计分析
对于每个感兴趣的变量——基于体素的灰质体积、区域灰质体积、逐点皮质厚度和区域皮质厚度——将依赖测量(例如,配准、调制和平滑的灰质分割)输入统计模型。对于横截面流,定义组(阿尔茨海默病患者与对照组)为自变量。对于纵向流,定义组与时间之间的交互作用为自变量,而受试者定义为无关变量。对于 VBM 和基于体素的ROI 分析,使用“全局缩放”对数据进行 TIV 校正(因为 TIV 与组相关,影响了感兴趣的效果)。由于皮质厚度与脑体积不成比例(Barnes 等人,2010),因此 SBM 和基于表面的ROI 分析不应用 TIV 校正。对于横截面分析,我们还将年龄作为一个干扰参数。
对于 VBM 和 SBM 分析,结果通过应用 TFCE (Smith & Nichols, 2009) 并控制家族误差在 p≤0.001(横截面)和 p≤0.05(纵向)进行多重比较校正。对于基于体素和基于表面的 ROI 分析,结果通过控制错误发现率 (Benjamini & Hochberg, 1995) 在 q≤0.001(横截面)和 q≤0.05(纵向)进行多重比较校正。鉴于我们先前的假设,AD 患者在基线时灰质较少且随着时间推移灰质减少更多,所有统计检验均为单尾。
VBM 和基于体素的 ROI 分析的结果叠加在由整个研究样本(n=50)创建的平均脑的正交截面上;SBM 和基于表面的 ROI 分析的结果投射到 FsAverage 表面上。
结果
CAT的概念
CAT12是当前版本的CAT软件,可在Matlab(Mathworks, Natick, MA)或不需要Matlab许可证的独立版本中运行。它最初设计用于SPM12,并兼容Matlab版本7.4(R2007a)及更高版本。不需要额外的软件或工具箱。最新版本的CAT可以在以下网址下载:https://neuro-jena.github.io/cat。Windows、Mac或Linux操作系统的预编译独立版本可以在以下网址下载:https://neuro-jena.github.io/enigma-cat12/#standalone。安装和运行CAT所需的所有步骤都记录在用户手册和附带的在线帮助中,可以通过CAT的帮助功能直接访问。CAT软件是开源的,并根据GNU通用公共许可证的条款发布。
CAT可以通过SPM、Matlab命令窗口、shell或作为独立版本启动。除非从命令shell调用(CAT完全可脚本化),将出现一个用户界面(见图1),允许轻松访问所有分析选项和大多数附加功能。此外,图形输出窗口将显示交互式帮助以开始使用。此交互式帮助将被分析结果(即在同一窗口中)取代,但可以随时通过用户界面再次调用。
图1:图形用户界面的元素。SPM菜单(a)和CAT菜单(b)允许访问(c)SPM批处理编辑器,以控制和组合各种功能。在处理流的末尾,横断面和纵向输出总结在一个特定于大脑的一页报告中(d,e)。此外,CAT提供检查图像质量(f)和样本同质性(g)的选项,以便在应用最终统计分析之前删除异常值,包括无阈值聚类增强(TFCE)(h);然后可以检索数值和图形输出(i),包括表面投影(j)。对于初学者,有交互式帮助(k)和用户手册(l)。对于专家,Linux和MacOS下提供命令行工具(m)。
计算形态学
CAT的处理管道(见图2)包含两个主要流:基于体素的VBM处理和基于表面的SBM处理。前者是后者的前提,而不是反过来。两个处理流都可以扩展,包括用于基于区域处理和基于区域的形态学(RBM)的附加步骤。
图2:主要处理流
(a) 简化版管道:CAT中的图像处理可分为基于体素的处理流和可选的后续基于表面的处理流。每个流程都需要不同的模板和图谱,此外,基于体素的分析流还需要组织概率图。基于体素的流包含两个主要模块——组织分割和空间配准——生成空间配准(和调制)的灰质/白质分割,为基于体素的形态学(VBM)提供基础。基于表面的流也包含两个主要模块——表面创建和配准——生成空间配准的表面图,为基于表面的形态学(SBM)提供基础。两个流还各包含一个可选模块,用于分析感兴趣区域(ROI),生成特定于ROI的平均体积(分别为平均表面值)。这为基于区域形态学(RBM)提供基础。
(b) 详细管道:为了说明与SPM的区别,CAT管道的各个处理步骤进行了详细说明。使用的SPM方法以蓝色斜体显示:首先通过空间自适应非局部均值(SANLM)滤波器(Manjón et al., 2010)对图像进行去噪,并重新采样为各向同性的体素大小。在应用初步偏差校正以促进仿射配准后,使用SPM的统一分割(Ashburner & Friston, 2005)进行头骨剥离,并作为自适应最大后验(AMAP)分割(Rajapakse et al., 1997)与部分容积估计(PVE)(Tohka et al., 2004)的起始估计。此外,SPM的分割用于局部校正图像强度。最后,AMAP分割的结果通过SPM的射击配准(shooting registration)方法配准到MNI模板上。
AMAP分割的结果还用于估计皮质厚度和中央表面,使用基于投影的厚度(PBT)方法(Dahnke et al., 2013)。更具体地说,在修复拓扑缺陷后(Yotter, Dahnke, et al., 2011),生成中央、脑膜和白质表面网格。然后,单独的左右中央表面分别配准到FreeSurfer模板的对应半球,使用DARTEL方法的二维版本(Ashburner, 2007)。在最后一步中,使用FreeSurfer厚度度量(Fischl & Dale, 2000; Masouleh et al., 2020)细化初步的皮质厚度估计。
基于体素的处理
基于体素的处理步骤大致可分为组织分割模块和空间配准模块。
组织分割:该过程首先应用空间自适应非局部均值(SANLM)去噪滤波器(Manjón et al., 2010),然后是SPM的标准统一分割(Ashburner & Friston, 2005)。结果输出作为进一步优化和CAT组织分割步骤的起点:首先,将大脑分为左右半球、皮下区域、脑室和小脑。此外,检测局部白质高信号(在空间配准和可选的表面处理期间考虑)。其次,执行局部强度转换,以减少运动皮层、基底神经节和枕叶中较高灰质强度的影响。第三,应用自适应最大后验(AMAP)分割,不需要任何关于组织概率的先验信息(Rajapakse et al., 1997)。AMAP分割还包括部分体积估计(PVE)(Tohka et al., 2004)。图3提供了CAT组织分割的准确性信息。
空间配准:使用测地射击法(Ashburner & Friston, 2011)将各个组织段配准到ICBM 2009c非线性不对称空间(MNI152NLin2009cAsym)中的标准模板,这里简称为MNI空间。虽然MNI空间也在许多其他软件包中使用,允许跨研究比较,但用户也可以选择使用自己的模板。图3提供了CAT空间配准的准确性信息。
图3 分割和配准准确性的评估
(a) 分割准确性:大多数脑分割方法假设每个体素属于特定的组织类别,如灰质(GM)、白质(WM)或脑脊液(CSF)。然而,脑图像的空间分辨率有限,导致在包含不同组织类型混合的体素中出现所谓的部分容积效应(PVE),如GM/WM和GM/CSF。由于PVE方法对噪声高度敏感,我们将PVE模型(Tohka et al., 2004)与空间自适应非局部均值去噪滤波器(Manjón et al., 2010)结合起来。为了验证我们的方法,我们使用了BrainWeb数据库(Aubert-Broche et al., 2006)中具有1-9%不同噪声水平的真实图像。通过计算kappa系数(kappa系数为1表示分割结果与真实值完全对应)确定所有组织类型(GM、WM、CSF)的分割准确性。左侧面板:PVE模型和去噪滤波器在1%和9%噪声极端情况下对组织分割的影响。右侧面板:不同噪声水平下的kappa系数。两个面板都展示了将PVE模型与空间自适应非局部均值去噪滤波器结合的优势,尤其是对噪声数据的强大益处。
(b) 配准准确性:为了确保大脑对应解剖区域的适当重叠,需要高维非线性空间配准。CAT使用复杂的射击方法(Ashburner & Friston, 2011),以及从IXI数据集中创建的平均模板(http://www.brain-development.org)。图中展示了使用所谓的“射击”配准和Dartel配准相比SPM标准配准时,在空间配准555个大脑时提高的准确性(即更详细的平均图像)。
(c) 预处理准确性:通过比较从自动提取的感兴趣区域(ROI)与手动标注的ROI中得出的测量值,我们验证了CAT中基于区域形态学(RBM)的性能。对于基于体素的分析,我们使用了40个大脑中手动标注的56个结构,作为LPBA40图谱(Shattuck et al., 2007)的基础。这些手动标注区域的灰质体积作为真实值,与使用CAT和LPBA40图谱计算的灰质体积进行了比较。对于基于表面的分析,我们使用了根据Desikan(Desikan et al., 2006)在39个大脑中手动标注的34个结构。这些手动标注区域的平均皮质厚度作为真实值,与使用CAT和Desikan图谱计算的平均皮质厚度进行了比较。图表显示了在基于体素(左)和基于表面(右)分析中手动和自动标注区域之间的极好重叠。
(d) 分割和表面创建的一致性:从不同各向同性空间分辨率和不同场强的MRI扫描仪上获取的同一大脑的数据:1.5T MPRAGE,体素大小为1 mm;3T MPRAGE,体素大小为0.8 mm;以及7T MP2RAGE,体素大小为0.7 mm。剖面图:左半球显示中央(绿色)、脑膜(蓝色)和白质(红色)表面;右半球显示灰质段。渲染视图:颜色条编码了投射到左半球中央表面的逐点皮质厚度。剖面图和半球渲染图都展示了在不同空间分辨率和场强下分割和表面创建程序结果的一致性。
基于体素形态学(VBM)
VBM应用于研究特定组织部分(通常是灰质)的体积(或局部量)(Ashburner & Friston, 2005; Kurth et al., 2015)。VBM包含不同的处理步骤:(a)如上所述的组织分割和(b)空间配准,此外还有(c)因配准而引起的体积变化调整(调制)以及(d)用3D高斯核卷积(空间平滑)。作为附注,调制步骤导致的体素灰质体积与原始空间中的体素灰质体积相同(即,空间配准之前),尚未校正大脑大小。为了消除大脑大小的影响,用户至少有两个选项:(1)计算总颅内体积(TIV)并将TIV作为协变量包含在统计模型中(Malone et al., 2014),或(2)选择“全局缩放”(见SPM中的二级选项)。如果TIV与感兴趣的效应相关(即不正交,例如性别),则推荐后者,这可以通过SPM中的“设计正交性(Design orthogonality)”进行测试
基于表面的处理
可选的基于表面的处理包括一系列步骤,大致可分为表面创建模块和表面配准模块。
表面创建:图3展示了CAT在不同磁场强度(1.5、3.0和7.0特斯拉)扫描仪上获得的数据的表面创建步骤。CAT使用基于投影的厚度方法(Dahnke et al., 2013),该方法在处理部分体积信息、沟裂模糊和沟裂不对称的同时,估计初始皮层厚度和初始中心表面,而无需显式地重建沟裂。经过此初始步骤后,使用球谐函数(Yotter, Dahnke, et al., 2011)修复拓扑缺陷(即沟回或沟裂之间的解剖学上不正确的连接)。拓扑校正后进行表面细化,最终形成中心、皮质和白质表面网格。在最后一步中,使用FreeSurfer厚度度量(Fischl & Dale, 2000; Masouleh et al., 2020)进一步细化初始皮层厚度估计。或者,最终的中心表面可用于计算皮层折叠的度量,如基于表面的形态测量部分所述。
表面配准:结果中的各个中心表面配准到FreeSurfer FsAverage模板的相应半球(https://surfer.nmr.mgh.harvard.edu/fswiki/FsAverage)。在此过程中,各个中心表面通过最小失真的球形膨胀(Yotter, Thompson, et al., 2011),并通过DARTEL方法的2D版本(Ashburner, 2007; Yotter, Ziegler, et al., 2011)创建个体和模板球体折叠模式之间的一对一映射。图3提供了CAT表面配准准确性的信息。
基于表面的形态测量(SBM)
SBM可用于研究皮层厚度或皮层折叠的各种参数。“皮层厚度”的测量是在数千个点上捕捉灰质带的内边界和外边界之间的距离(见图4)。为了获得“皮层折叠”的测量,用户在CAT中有多种选择,从脑回化指数(Gyrification)(Luders et al., 2006)到沟裂深度(Sulcal Depth)(van Essen, 2005)再到(皮层复杂性)Cortical Complexity(Yotter, Nenadic, et al., 2011)和表面积比(Surface Ratio)(Toro et al., 2008),如图4所述并解释。与VBM类似,SBM包含一系列不同的步骤:(a)表面创建和(b)表面配准,如上所述,以及(c)空间平滑。顺便提一下,由于在空间配准过程中,原始空间中的测量值直接映射到模板上,因此不需要额外的调制(如在VBM中)来保持个体差异。与VBM相比,SBM不需要大脑大小校正,因为皮层厚度和皮层折叠与总大脑体积没有密切关系(与灰质体积不同)(Barnes et al., 2010)。
图4:皮层测量
基于表面的形态测量用于研究皮层表面特征(即皮层厚度和各种皮层折叠参数),在数千个表面点进行测量。
皮层厚度:最著名且使用最频繁的形态测量指标之一是皮层厚度,它捕捉灰质带内边界(白质表面)和外边界(脑膜表面)之间的距离。
皮层折叠:CAT提供了不同的皮层折叠测量,由中央表面的几何形状导出:‘脑回化’是通过中央表面的绝对平均曲率(Luders et al., 2006)计算的。‘沟深’是计算中央表面到包围外壳的距离(van Essen, 2005)。‘皮层复杂性’是使用球谐重建的中央表面积的分形维数计算的(Yotter, Nenadic, et al., 2011)。最后,‘表面积比’是定义大小的球体内包含的中央表面积与具有相同半径的圆盘面积之间的比率计算的(Toro et al., 2008)。
基于区域的处理和形态学
除了通过VBM或SBM进行体素或点分析外,CAT还提供了通过基于区域形态学(RBM)进行区域分析的选项。为此,应用基于体素(或基于表面)的处理步骤,然后自动计算区域测量值。通过使用标准化的图谱定义的感兴趣区域(ROI)来实现这一目的。CAT中提供了所需的图谱(见补充表1和补充表2),但用户也可以使用自己的图谱。
基于体素的ROI
CAT中可用的体积图谱已在MNI空间中的脑模板上定义,可以使用基于体素处理期间确定的空间配准参数映射到个体大脑。然后可以在原始空间中为每个ROI计算体积测量值,如区域灰质体积。
基于表面的ROI
CAT中提供的表面图谱在FsAverage表面上提供,可以使用基于表面处理期间确定的球面配准参数映射到个体表面。然后可以在原始空间中为每个ROI计算基于表面的测量值,如皮质厚度或皮质折叠。
CAT的性能
CAT允许将处理流分配到多个处理核心,以减少处理时间。例如,使用内置的并行处理能力在四个核心上,CAT12对50个受试者的分析(见示例应用)在分析每个受试者的一张图像时(横截面流),需要七小时的处理时间,而在处理每个受试者的三张图像(纵向流)时需要18小时。对于单张T1加权图像的所有可用工作流的应用需要约35分钟,计时是在使用Matlab 2017b、SPM12 r7771和CAT12.8 r1945的4 GHz Intel Core i7和32 GB RAM的iMac上完成的。
通过评估其准确性、灵敏度和稳健性,CAT的性能已被彻底测试,并与神经影像学界经常使用的其他工具进行了比较。为此,我们应用了CAT12并分析了真实数据(见示例应用)以及从BrainWeb生成的模拟数据(https://brainweb.bic.mni.mcgill.ca/brainweb)。评估程序详见补充说明1和补充说明2;结果见补充图1和补充图2。CAT证明了其准确性、灵敏度、可靠性和稳健性,优于其他常见的神经影像工具。
补充图1:CAT12与其他常见工具的比较。
面板a:使用FSL-FAST6(顶部)、SPM12-Shooting(中间)和CAT12(底部)对体素灰质体积的VBM分析。
面板b:使用CIVET2.1(顶部)、Freesurfer7.2(中间)和CAT12(底部)对逐点皮质厚度的SBM分析。
面板c和d:VBM和SBM分析的灵敏度。x轴显示效应大小(Cohen’s d);y轴显示其频率(出现频率归一化为1以便于直方图之间的比较)。对于VBM和SBM,CAT12在检测结构差异方面显示出更大的灵敏度。这反映在更广泛的显著性集群和较低的p值(面板a和b)以及较大的效应大小(面板c和d)中。
补充图2:使用Brainweb数据评估CAT12和其他常见工具。较高的kappa值对应于更好的重叠、较高的可靠性和更高的稳健性。
面板a:在不同噪声水平下,基准真值(ground truth)与分割输出之间的重叠。CAT12在较低噪声水平下与FSL-FAST6相似,但在较高噪声水平下明显优于SPM12和FSL-FAST6。这是由于实施了去噪步骤(见图3a中去噪的效果)。
面板b:在不同信号不均匀性下,基准真值与分割输出之间的重叠。CAT12在整个强度非均匀性范围内表现出极高的稳健性,优于SPM12和FSL-FAST6。
补充图3:使用纵向数据比较CAT12的横截面和纵向管道。左侧显示基于体素形态学(VBM)结果,右侧显示基于表面形态学(SBM)结果。对于VBM和SBM,与横截面处理相比,纵向预处理导致了更高的灵敏度,这在更大集群和较低p值(面板a和b)以及较大的效应大小(面板c和d)中体现出来。效应大小在x轴上显示,其出现频率在y轴上归一化为总和为1(以便于直方图之间的比较)。
补充图4 CAT12的纵向处理工作流用于检查(a)神经可塑性、(b)老化和(c)神经发育。
所有这三个工作流的第一步都是创建所有时间点的高质量平均图像。为此,CAT12使用反向一致(或对称)刚体配准和受试者内偏差场校正对所有时间点的图像进行重新对齐。虽然这对于神经可塑性和老化工作流来说已经足够创建所需的平均图像,但神经发育工作流还需要额外的非线性配准。无论哪种情况,得到的平均图像都会使用CAT12的常规处理工作流进行分割,以创建特定受试者的组织概率图(TPM)。此TPM用于增强时间点特定的处理,以创建最终的分割。然后将最终的组织分割结果注册到MNI空间,以获得时间点和受试者之间的体素可比性,这在所有三个工作流中都有所不同。在神经可塑性工作流中,创建时间点特定配准的平均值,以将所有时间点的组织分割转换到MNI空间。老化工作流在原则上是相同的,但在各个时间点之间添加了额外(非常平滑)的变形,以解释随时间不可避免的年龄相关变化(例如,脑室的扩大)。相反,神经发育工作流需要考虑主要的变化,例如整个头部和大脑的生长,这需要对所有时间点的图像进行独立的非线性配准到MNI空间(使用默认的横截面配准模型获得)。
补充图5 个体特异性质量控制。
每次扫描的个体质量评分有助于确定单次扫描的潜在问题和使用中的问题。“图像质量评分”(顶部)使用噪声、偏差和图像分辨率的度量生成每张图像的总结评分(Gilmor等人,2021)。处理工作流完成后,会自动为每张图像保存一份“CAT处理报告”(左),提供有关图像质量度量和总体评分的信息,以及便于评估颅骨剥离、组织分割和表面映射质量的可视化。此外,任何使用纵向管道的情况下,都会自动保存一份“纵向报告”(右)(见补充说明3)。该纵向报告—考虑到一个大脑在所有时间点的所有图像—提供与标准横截面报告相同的信息,但侧重于评估各个时间点之间的差异。
补充图6 群体特异性质量控制。除了个体特异性质量控制外,特别是对于较大的研究,可能需要仔细检查那些个体质量评分较低和/或与其他图像不同的图像,以提示解剖异常、处理不完善或其他可能影响后续统计分析的问题。“群体箱形图”(左)允许根据图像与均值的相似性比较任何图像,并通过计算所有空间配准图像(或表面参数文件)的平均Z分数来反映样本的同质性。较低的平均Z分数表示数据点更类似于均值。异常值(即具有高Z分数的图像)表明图像本身或图像处理结果可能存在潜在问题,或者仅仅是神经解剖学的变异(例如,脑室扩大)。应仔细检查这些异常值。额外的“IQR x 平均Z分数窗口”(右)比较每个受试者的平均Z分数和加权图像质量评分(IQR),并允许综合查看样本同质性和整体图像质量。
补充图7 体积映射。CAT12提供了多种将体素值映射到表面的方法。默认的映射方式是沿着白质表面和软脑膜表面之间的表面法向量,在多个位置提取体素值。这些位置在法向量上的精确位置由等体积模型(Bok, 1929)决定,该模型反映了由局部折叠引起的皮层层的移位。然而,体素值也可以在给定表面位置的特定用户定义位移(以毫米为单位)处提取。
CAT的五个精选功能
1.纵向处理
除了提供横截面分析的标准管道外,CAT还具有特定的纵向管道,确保在受试者之间和受试者内部各时间点的局部可比性。与横截面管道相比,这些纵向管道在映射随时间的结构变化时使分析结果更加准确。用户可以选择三种不同的纵向管道:第一种用于分析大脑可塑性(持续数天、数周、数月);第二种用于分析大脑发育(持续数月和数年);第三种用于分析大脑老化(持续数月、数年、数十年)。更多详情请参阅补充说明3。
2.质量控制
CAT引入了一个回顾性质量控制框架,用于实证量化基本图像参数,如噪声、强度不均匀性和图像分辨率(所有这些都可能受到运动伪影的影响)。提供了单独的参数特定评分以及便捷的总体评分(Gilmore等人,2021)。此外,还可以通过图像处理质量和每个大脑的解剖特征来计算Z分数,从而轻松识别图像异常值。更多详情请参阅补充说明4。
3.映射到皮质表面
CAT允许用户将体素基础的值(例如,定量、功能或扩散参数)映射到个体大脑表面(即脑膜、中央和/或白质)进行表面基础分析。集成的等容模型(Bok,1929)也考虑到局部折叠引起的细胞结构层的移动。可选地,CAT还允许在每个节点沿表面法线的多个位置映射体素值—支持超高分辨率功能MRI数据的层特异性分析(Kemper等人,2017;Waehnert等人,2013)。更多详情请参阅补充说明5。
4.无阈值簇增强(TFCE)
CAT附带了自己的TFCE工具箱,并提供选项在SPM中的任何统计二阶分析中应用TFCE(Smith & Nichols,2009),无论是体素基础还是表面基础分析。它还可以用于分析功能MRI(fMRI)或扩散张量成像(DTI)数据。TFCE工具箱的一个特别有用的功能是,它可以自动识别SPM中现有统计设计中的可交换性模块和潜在干扰参数(Winkler等人,2014)。更多详情请参阅补充说明4。
5.可视化
CAT允许用户生成图表和图像,为探索发现和生成符合现行标准的发表图提供了坚实的基础。具体来说,它包括两套不同的工具来可视化结果:第一套工具通过提供阈值化默认SPM T图或F图以及将统计参数(例如,T图和F图转换为p图)的选项来对基于体素和基于表面的数据进行可视化。第二套工具可视化数据,为用户提供了丰富的选项,可以从不同的大脑模板、视图、切片、显著性参数、显著性阈值、配色方案等中进行选择(见图5)。
图5:CAT 结果可视化示例
基于表面和体素的数据都可以展示在表面上,例如 (a) 膨胀的 FsAverage 表面,或 (b) Connectome Workbench 的平面图。体积图也可以显示为 (c) MNI 平均脑的切片叠加图,或 (d) 最大强度投影(所谓的“玻璃脑”)。所有面板显示的是我们示例中纵向 VBM 研究的校正 p 值(见示例应用)。
示例应用
为了演示 CAT 的应用,我们调查了一个实际数据集,重点研究阿尔茨海默病对脑结构的影响。更具体地说,我们比较了25名阿尔茨海默病患者和25名匹配的对照组。我们应用了 (I) 基于体素的灰质体积分析 (VBM),(II) 基于区域的灰质体积分析 (RBM),(III) 以逐点为基础的皮质厚度分析 (SBM),以及 (IV) 以基于区域的皮质厚度分析 (RBM)。鉴于阿尔茨海默病的丰富文献,我们预期患者相比对照组在灰质体积和皮质厚度上会有萎缩,尤其是在内侧颞叶和默认模式网络区域(Bayram 等,2018;Dickerson,2010)。除了区分这四种形态学测量(I-IV)外,所有分析都使用 CAT 中的横截面和纵向流进行。总体而言,我们预计纵向变化将出现在与横截面组差异相似的脑区,但横截面的效果将比纵向效果更为显著。该示例分析的结果将在下一部分中展示和讨论。
讨论
示例应用
如图6所示,所有四种横截面流——调查以体素为基础的灰质体积、区域灰质体积、点状厚度和区域厚度——均揭示了阿尔茨海默病患者与匹配对照组之间的广泛组间差异。总体而言,横截面和纵向流之间的效果是可比的,但横截面上显著的簇更为突出(注意横截面和纵向之间的不同阈值)。
图6:阿尔茨海默病患者与健康对照组相比,灰质和皮质厚度显著萎缩。
(a)基于体素形态测量 (VBM) 结果:使用无阈值簇增强 (TFCE) 估算结果,通过控制全家族误差 (FWE) 进行多重比较校正,并在横截面数据的 p<0.001 和纵向数据的 p<0.05 阈值下进行阈值处理。显著结果投射到由整个研究样本(n=50)创建的平均脑的正交截面上(交叉点位于 x=-27mm, y=-10mm, z=-19mm)。
(b) 体积区域兴趣 (ROI) 结果:使用 Neuromorphometrics 图谱定义 ROI。结果通过控制错误发现率 (FDR) 进行多重比较校正,并在横截面数据的 q<0.001 和纵向数据的 q<0.05 阈值下进行阈值处理。显著结果投射到与 VBM 结果相同的正交截面上。
(c) 基于表面形态测量 (SBM) 结果:使用 TFCE 估算结果,通过 FWE 校正,并在横截面数据的 p<0.001 和纵向数据的 p<0.05 阈值下进行阈值处理。显著结果投射到 FreeSurfer FsAverage 表面上。
(d) 表面区域兴趣 (ROI) 结果:使用 DK40 图谱定义 ROI。结果通过 FDR 校正,并在横截面数据的 q<0.001 和纵向数据的 q<0.05 阈值下进行阈值处理。显著结果投射到 FsAverage 表面上。
更具体地说,使用 VBM 分析,发现阿尔茨海默病患者的灰质体积显著小于对照组,特别是在内侧和外侧颞叶以及默认模式网络区域(图6a上)。同样,纵向随访揭示了患者相比对照组灰质体积的显著下降,效果位于内侧颞叶以及默认模式网络(图6a下)。基于体素的 ROI 分析的显著模式与 VBM 研究相似,在颞叶中特别显著的组间差异延伸到包括默认模式网络的其他脑区(图6b上)。再次,纵向分析结果与横截面分析结果相似,但不如横截面分析显著,尽管纵向效果比 VBM 分析中的更强(图6b下)。
使用 SBM 分析,逐点皮质厚度分析显示出与 VBM 分析相似的模式,患者皮质显著变薄,特别是在内侧和外侧颞叶以及默认模式网络区域(图6c上)。正如在 VBM 分析中一样,显著簇广泛并延伸到相邻区域。再次,纵向流的结果不如横截面流的结果广泛和显著(图6c下)。最后,基于表面的ROI 分析在很大程度上复制了 SBM 分析中的局部发现(图6d上/下)。
总体而言,所有分析流的结果证实了阿尔茨海默病文献中的先前发现,特别是在内侧颞叶和默认模式网络区域的强疾病效应(Bayram 等人,2018;Dickerson,2010)。此外,各种测量之间的可比模式表明,尽管灰质体积和皮质厚度在生物学上不同且不完全相关(Hutton 等人,2009;Winkler 等人,2018),但现有形态学选项之间具有相当的一致性。
CAT12 的评估
如补充图1和补充图2所示,CAT12 被证明是准确、敏感、可靠和稳健的,优于其他常用的神经影像工具。独立评估在比较一个或多个软件与 CAT12 时得出了类似的结论。例如,Guo 等人(2018)评估了使用 FreeSurfer、FSL-SIENAX 和 SPM 的大脑体积测量的可重复性和可再现性,并强调了 CAT12 的可靠性。同样,CAT12 在展示处理管道选择影响神经解剖学标记位置时被证明是一种稳健的选择(Zhou 等人,2022)。最后但同样重要的是,Khlif 等人(2019)比较了 CAT12 的自动海马分割结果与手动描绘的结果,并证明两种方法产生了可比的海马体积。
此外,许多评估表明 CAT12 的性能至少与其他常用的神经影像工具一样好,因此提供了一种有价值的替代方案。例如,Tavares 等人(2019)进行了一项 VBM 研究,得出结论认为 CAT12 和 SPM12 实现的分割管道提供的结果高度相关,管道的选择对任何脑体积测量的准确性没有影响。同样,对于 SBM,Ay 等人(2022)报告称,CAT12 和 FreeSurfer 在基于分区的皮质厚度计算方面产生了同样有效的结果。de Fátima Machado Dias 等人(2022)解决了可再现性问题,观察到使用 CAT12 和 FreeSurfer 的皮质厚度测量在个体水平上是可比的。此外,Seiger 等人(2018)在阿尔茨海默病患者和健康对照组中进行了一项研究,发现 CAT12 和 FreeSurfer 提供了一致的皮质厚度估计和出色的测试-重测变异性评分。Velázquez 等人(2021)在一项测试-重测分析和临床应用中支持了这些发现,他们将 CAT12 和 FreeSurfer 与三种基于体素的方法进行了比较。最后,Righart 等人(2017)比较了多发性硬化症中的体积和表面基础的皮质厚度测量,强调了 CAT12 的一致性能。
这些来自多项研究的集体发现支持了 CAT12 是一种用于 VBM 和 SBM 分析的稳健且可靠的工具,其结果与其他公认的神经影像软件可比,有时甚至优于它们。
结论
CAT 适用于台式机和笔记本电脑以及高性能集群。它完全集成在 Matlab 中的 SPM 环境中,但也允许直接从命令行执行处理,而无需启动 SPM。CAT 也可作为独立版本使用。在性能方面,CAT 允许超快速的处理和分析,并且在检测显著效果方面比其他常用的神经影像工具更敏感。此外,它在处理不同水平的噪声和信号不均匀性方面表现更佳。此外,CAT 易于与非 SPM 软件包集成,并且支持脑成像数据结构 (BIDS) 标准(Krzysztof 等人,2015)。因此,CAT 不仅适合处理小型数据集(如示例应用所示),也适合处理大型数据集,如 UK Biobank (https://www.ukbiobank.ac.uk) 或 ENIGMA (https://enigma.ini.usc.edu) 的样本。最后,虽然 CAT 目前主要针对结构成像数据,但某些功能(例如高维空间配准或映射到皮层表面)也可以用于功能、扩散或定量 MRI 或 EEG/MEG 数据的分析。
补充材料
补充说明 1:与其他工具的比较
我们通过与神经影像学界常用的其他工具进行比较,评估了 CAT12 的性能。具体来说,我们使用 CAT12、SPM12、FSL-FAST6、Freesurfer6 和 CIVET 2.1 评估了检测早期诊断和监测阿尔茨海默病所需的脑结构微小变化的准确性和敏感性。请注意,我们比较的主要目的是提供工具性能的见解;揭示与阿尔茨海默病相关的异常仅是本文的次要目的。为了进行比较,我们使用了与示例应用相同的基线数据(25 名阿尔茨海默病患者和 25 名匹配的对照组),如主文所述。分析集中在 (1) 体素水平的灰质体积和 (2) 点水平的皮质厚度。与 (1) 相关的分析使用基于体素形态学 (VBM) 进行处理数据,分别使用 (1a) SPM12 (https://www.fil.ion.ucl.ac.uk/spm) 以及 (1b) FSL-FAST6 (https://www.fmrib.ox.ac.uk/fsl)。与 (2) 相关的分析使用基于表面形态学 (SBM) 进行处理数据,分别使用 (2a) Freesurfer7.2 (https://surfer.nmr.mgh.harvard.edu) 以及 (2b) Civet2.1 (https://mcin.ca/technology/civet)。
VBM 数据处理
1a-SPM12:我们在 SPM12 中应用统一分割(Ashburner & Friston, 2005)使用默认设置提取刚性配准的灰质和白质分割。这些个体分割提供了使用 SPM12 中的 Shooting 工具箱(Ashburner & Friston, 2011)创建平均分割的基础。这个平均分割作为初始模板,并被变形到每个个体分割上,然后计算得到的变形,应用变形的逆变换到个体图像,并重新计算模板(即平均分割)。这个过程重复多次。结果是空间配准的分割,并通过配准引入的体积变化进行调整(调制),并用 FWHM 6mm 的高斯核卷积(平滑)。
1b-FSL-FAST6:我们使用 FSL6 中的 FSLVBM 脚本处理数据(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM/UserGuide)。默认情况下使用 BET 对数据进行头骨剥离。然而,所获得的输出质量较差,因此我们使用上述 SPM12 分割(在原始空间中)对数据进行头骨剥离。然后使用 FSLVBM 脚本处理头骨剥离的数据,并用 6mm 高斯核平滑,如上所述。
SBM 数据处理
2a-Freesurfer7.2:使用 Freesurfer7.2 的 recon-all 脚本处理数据(https://surfer.nmr.mgh.harvard.edu),使用默认设置。为了更好地比较工具,使用 CAT12 对生成的皮质厚度测量进行了重新采样和平滑(FWHM 12 mm)。
2b-CIVET2.1:将数据上传到 CBRAIN(https://portal.cbrain.mcgill.ca)并使用 CIVET2.1 流水线处理,使用默认设置。同样,使用 CAT 对皮质厚度测量进行了重新采样和平滑(FWHM 12 mm),以便更好地比较工具。
统计分析
有关统计模型的详细信息(例如,因变量、自变量和无关变量),请参阅主文中的方法部分。所有结果通过应用 TFCE(Smith & Nichols, 2009)并控制全家族误差在 p<0.001 进行多重比较校正。鉴于我们先前的假设,AD 患者在基线时灰质较少,随着时间推移灰质减少更多,所有统计检验均为单尾。此外,我们计算了效应大小,以便直接比较工具在检测 AD 患者和对照组之间显著差异方面的敏感性。
补充说明 2:使用模拟数据的评估
为了全面评估 CAT12 与其他神经影像工具(SPM12 和 FSL-FAST6)的性能,我们使用 BrainWeb生成的模拟数据进行了评估。具体来说,我们将 CAT12、SPM12 和 FSL-FAST6 的输出与表示脑模型的基准真实数据进行了比较。由于脑模型数据包含已知的噪声水平和信号不均匀性变化,它有助于客观评估 CAT12 和其他工具在处理不同来源变化方面的准确性和鲁棒性。为了测量地面真实数据与 CAT12、SPM12 和 FSL-FAST6 结果之间的一致性,我们计算了 kappa 系数。
补充说明 3:纵向处理
大多数形态学研究基于横截面数据,其中为每个受试者获取一张图像。然而,映射结构变化随时间的变化需要特定的纵向设计,考虑每个受试者的额外时间点(因此也考虑额外的图像)。理论上,所有图像都可以使用标准的横截面处理工作流进行处理。然而,实际上,纵向数据显著受益于专门针对纵向分析的工作流,其中进一步减少了基于 MR 的噪声和不均匀性,并确保了空间对应性,这不仅在受试者之间,也在受试者内部的各个时间点之间(Ashburner & Ridgway, 2012; Reuter 等,2010; Reuter & Fischl,2011)。因此,分析变得更加敏感,如补充图 3 所示。
CAT12 为纵向研究提供了三个优化的处理流程:一个用于神经可塑性研究,一个用于衰老研究,一个用于神经发育研究。神经可塑性框架内的研究限于几周到几个月的短时间框架,而衰老和神经发育框架内的研究覆盖了更长的时间框架,年数,有时甚至数十年。对于这样的延长研究持续时间,特别重要的是建模大脑随时间的系统变化,以保持在所有时间点之间的体素或点的可比性。神经发育框架内的研究需要额外考虑大脑和头部尺寸的增加。所有三个纵向处理工作流的详细描述见补充图 4。
补充说明 4:质量控制
MRI 数据处理很大程度上依赖于输入数据的质量。尤其是多中心研究和数据共享项目需要考虑由于不同扫描仪、序列和协议导致的图像属性差异。然而,即使在单个扫描仪上并使用相同的扫描协议获取的扫描图像也可能由于运动或其他杂散伪影而有所不同。CAT12 提供了在受试者层面和组层面进行质量检查的选项。具体来说,在受试者层面,CAT12 引入了一个新的回顾性质量控制框架,用于量化在单个扫描仪上或跨不同扫描仪获取的不同扫描之间的质量差异。当运行 CAT12 的图像处理工作流时,质量控制会自动对每个大脑执行(见补充图 5)。在组层面,CAT12 提供了检查和可视化整个研究样本均匀性的选项,从而允许用户识别任何异常值(见补充图 6)。
补充说明 5:映射到皮层表面
基于表面的分析比基于体素的方法具有一些优势,例如更好的受试者间配准和表面基础平滑,这可能导致更大的统计效力和更高的准确性(Dahnke & Gaser,2018;Tucholka 等,2012)。CAT12 提供了一系列选项,将基于体素的值(例如,功能性、定量或扩散参数)映射到个体大脑表面,以便进行后续的基于表面的分析。为此,将基于体素的值在表面每个节点的表面法线的多个位置处提取(见补充图 7)。表面法线上的确切位置由等体积模型(Bok,1929)确定,该模型反映了由局部折叠引起的细胞构造层的正常位移。除了默认设置,用户还可以指定这些位置沿表面法线的位置和数量。沿表面法线提取的值然后总结为每个节点的一个值。默认情况下,使用绝对最大值总结值。然而,也可以使用绝对最大值以外的其他选项,例如最小值、均值或加权均值。
如需原文及补充材料请添加思影科技微信:19962074063或18983979082获取,如对思影课程及服务感兴趣也可加此微信号咨询。另思影提供免费文献下载服务,如需要也可添加此微信号入群,原文也会在群里发布,如果我们的解读对您的研究有帮助,请给个转发支持以及右下角点击一下在看,是对思影科技的支持,感谢!