静息态fMRI的回归动态因果模型(rDCM)

 "静息态"功能磁共振成像(rs-fMRI)被广泛用于研究大脑连接。到目前为止,研究人员仅限于使用计算效率高但无方向性的功能连接测量,或仅限于小型网络的有方向性有效连接估计。在这里,我们展示了一种最近为任务fMRI开发的方法 - 回归动态因果建模(rDCM) - 可以扩展到rs-fMRI,并提供方向性估计和可扩展到全脑网络的能力。首先,模拟研究表明rDCM能在广泛的信噪比和重复时间范围内忠实地恢复参数值。其次,我们测试了rDCM相对于一个已建立的有效连接模型(谱DCM)的构建效度。使用近200名健康参与者的rs-fMRI数据,rDCM产生了与谱DCM估计一致的生物学上合理的结果。重要的是,rDCM在计算上高效,可以在标准硬件上几分钟内重建全脑网络(>200个区域)。这为连接组学开辟了令人期待的新途径。本文发表在Human Brain Mapping杂志。

1 引言

      "静息态"功能磁共振成像(rs-fMRI)长期以来被用于研究大脑在无特定实验操作的非限制性认知状态下的功能组织(Biswal, Van Kylen, & Hyde, 1997; Biswal, Yetkin, Haughton, & Hyde, 1995)。具体而言,静息态fMRI揭示了血氧水平依赖(BOLD)信号中的自发(内源性)波动在大脑中高度结构化(Fox et al., 2005; Greicius, Supekar, Menon, & Dougherty, 2009; Raichle et al., 2001)。在过去的二十年里,rs-fMRI已成为神经影像学中最具活力的领域之一(综述见Smith et al., 2013; van den Heuvel & Hulshoff Pol, 2010),现在在连接组学(Craddock et al., 2013)和网络神经科学(Bassett & Sporns, 2017)等学科中发挥着核心作用。这部分是由于其实践上的简单性,使rs-fMRI适用于可能难以遵循复杂认知任务的受试者群体,如神经精神病患者、老年人或婴儿。

      到目前为止,rs-fMRI数据主要是从功能连接的角度进行分析,功能连接代表了大脑空间上不同区域BOLD信号时间序列之间的统计相互依赖性(Friston, 2011)。评估功能连接最简单的方法是计算相应BOLD信号时间序列之间的皮尔逊相关系数。其他功能连接测量方法包括偏相关、相干性、互信息和独立成分分析(全面综述见Karahanoglu & Van De Ville, 2017)。

      无论具体方法如何,这些统计技术都揭示了静息大脑中一些具有相关时间模式的大尺度网络。这些静息态网络(RSNs)的特征是其固有组件集合中的时间序列相当一致,而网络之间的时间序列则足够不同(Beckmann, DeLuca, Devlin, & Smith, 2005; Fox & Raichle, 2007; Smith et al., 2009)。最突出的RSN可以说是默认模式网络(DMN),它也经常被称为任务负相关网络(Raichle et al., 2001; Shulman et al., 1997)。DMN最初被发现是一组在各种需要注意力、目标导向、非自我参照任务中显示去激活的一致脑区集合(全面综述见Raichle, 2015)。现在已经清楚,DMN也可以在特定的目标导向范式中激活,如自传体任务(Spreng, 2012)、思考他人和自己,或回忆过去和规划未来(Buckner, Andrews-Hanna, & Schacter, 2008)。自DMN被发现以来,在大多数皮层系统中都识别出了类似的静息态一致性模式,产生了其他RSNs,如背侧注意网络(DAN; Corbetta & Shulman, 2002; Fox, Corbetta, Snyder, Vincent, & Raichle, 2006)、突显网络(SAN; Dosenbach et al., 2007; Menon & Uddin, 2010)和中央执行网络(CEN; Spreng, Sepulcre, Turner, Stevens, & Schacter, 2013; Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010)。所有RSNs即使在睡眠和各种形式的麻醉下也持续存在(Picchioni, Duyn, & Horovitz, 2013; 但见Tagliazucchi & Laufs, 2014),并显示高度遗传性(Fornito et al., 2011; Glahn et al., 2010),这表明它们可能代表人类大脑的基本组织原则。

      重要的是,从rs-fMRI数据绘制宏观功能连接组不仅揭示了健康人类大脑的组织原则,也揭示了疾病状态下的原则。在大多数精神和神经系统疾病中都观察到了异常的静息态功能连接(Baker et al., 2019; Buckholtz & Meyer-Lindenberg, 2012; Bullmore & Sporns, 2009; Fornito, Zalesky, & Breakspear, 2015; Stam, 2014)。例如,包括精神分裂症(Baker et al., 2014; Friston, Brown, Siemerkus, & Stephan, 2016; Lui et al., 2015)、抑郁症(Greicius et al., 2007; Wang, Hermens, Hickie, & Lagopoulos, 2012)和自闭症(Courchesne et al., 2007; Hahamy, Behrmann, & Malach, 2015)在内的精神疾病都与静息态功能连接的病理改变相关。

      尽管这些研究对我们理解人类大脑的组织原则做出了深远贡献,但功能连接的测量本质上描述的是数据的统计属性,并不能揭示数据是如何产生或生成的。因此,功能连接并不直接捕捉神经元交互潜在水平的机制。此外,功能连接的测量是无方向性的,因此不能捕捉相互连接中的不对称性。这是有问题的,因为在大脑区域之间的耦合中反复发现了不对称性,无论是在解剖学(Felleman & Van Essen, 1991; Markov et al., 2014)还是功能(Frässle et al., 2016; Gazzaniga, 2000; Stephan, Marshall, Penny, Friston, & Fink, 2007; Zeki & Shipp, 1988)方面。

      相比之下,有效连接指的是大脑区域之间的定向交互,可以通过利用潜在(隐藏)神经元状态的生成模型以及这些状态如何产生观察到的测量结果来评估(Friston, 2011)。动态因果建模(DCM; Friston, Harrison, & Penny, 2003)是从fMRI数据推断有效连接最广泛使用的生成建模框架之一,已经建立了DCM的变体来模拟静息状态,包括随机DCM(Daunizeau, Friston, & Kiebel, 2009; Li et al., 2011)和谱DCM(Friston, Kahan, Biswal, & Razi, 2014)。虽然这些模型能够对静息状态下的功能整合提供更具机制性的解释,但由于计算限制,它们仅限于相对较小的网络。

     我们最近引入了一种新的fMRI DCM变体 - 称为回归动态因果建模(rDCM; Frässle, Lomakina, et al., 2018; Frässle et al., 2017),它在几个方面与之前的DCM不同。最重要的是,rDCM在计算上高效,可以优雅地扩展到包含数百个节点的非常大的网络,为全脑有效连接分析铺平了道路(Frässle et al., 2021)此外,该模型可以利用结构连接信息来约束对定向功能交互的推断,或者在没有这种信息的情况下,推断全脑连接模式的最优稀疏表示。虽然rDCM最初是为实验控制的扰动(即任务数据)而设计的,但当前的实现原则上也可以应用于rs-fMRI数据。然而,这一点尚未得到彻底测试。在这里,我们评估rDCM在推断静息状态有效连接方面的表面效度和构建效度。为此,我们进行了全面的模拟分析,并将rDCM与谱DCM进行比较,后者是小型网络rs-fMRI数据的另一种成熟的生成模型。这种比较利用了双极-精神分裂症中间表型网络(B-SNIP)联盟(Tamminga et al., 2013)获得的大规模经验静息态fMRI数据集。最后,我们展示了rDCM可以优雅地扩展到200多个区域的大型网络,并能够在分钟级时间尺度上从rs-fMRI数据快速推断全脑有效连接模式。

2 方法和材料

2.1 回归DCM

2.1.1 总体概述

      回归DCM(rDCM)是DCM的一种新型fMRI变体,可以在大型(全脑)网络中进行有效连接分析(Frässle, Lomakina, et al., 2018; Frässle et al., 2017)。这可以通过对原始DCM框架应用几个修改和简化来实现。简而言之,这些包括:

      (i)使用傅里叶变换将状态和观察方程从时间域转换到频率域(在平稳性假设下);

      (ii)用线性血液动力学响应函数(HRF)替代非线性生物物理血液动力学模型;

      (iii)在区域间应用平均场近似(即假设针对不同区域的连接参数是独立的);

      (iv)在神经元(即连接和驱动输入)参数和噪声精度上指定共轭先验。这些修改本质上将时间域中的线性DCM重新表述为频率域中的贝叶斯线性回归,得到以下似然函数:

图片

      这里,Yr是区域r中的因变量,它被解释为来自其他区域的传入连接和直接(驱动)输入的线性混合。具体来说,Yr是区域r中测量信号的时间导数的傅里叶变换。此外,yr代表区域r中测量的BOLD信号,X是设计矩阵(包含一组回归变量和解释变量),uk是第k个实验输入,帽子符号表示离散傅里叶变换(DFT)。此外,θr表示包含所有连接ar,1, …, ar,R和所有针对区域r的驱动输入参数cr,1, …, cr,K的参数向量。最后,τr表示区域r的噪声精度参数,IN × N是单位矩阵(其中N表示数据点的数量)。在方程(1)中选择适当的参数和超参数先验(见Frässle et al., 2017)会产生一个可用于推断定向连接强度和输入的生成模型。

     在这种形式下,可以通过(迭代)执行一组关于后验密度充分统计量的分析变分贝叶斯(VB)更新方程来非常有效地进行推断。此外,可以推导出负(变分)自由能的表达式(Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007)。负自由能代表了同时考虑模型准确性和复杂性的对数模型证据的下界近似。因此,负自由能为评分模型优度提供了一个合理的度量,从而作为比较竞争假设的标准(Bishop, 2006)。我们最近通过在模型似然中引入稀疏约束来进一步增强rDCM,以允许全连接网络结构的自动剪枝(Frässle, Lomakina, et al., 2018)。值得注意的是,本文关注的是没有稀疏约束的原始rDCM实现。rDCM生成模型的全面描述,包括方程(1)中似然函数背后的神经元状态方程的数学细节,可以在其他地方找到(Frässle, Lomakina, et al., 2018; Frässle et al., 2017)。

2.1.2 应用于静息态数据

      虽然rDCM最初是为实验控制的扰动(即任务数据)而设计的,但也可以将模型拟合到rs-fMRI数据。这可以通过"关闭"驱动输入(即在没有实验输入uk的情况下将所有输入参数ci,j设置为零)来实现,并且为了解释任何给定区域的活动,依赖于从接收传入连接的区域测量的数据(在傅里叶域中);比较方程(1)中的似然函数。这意味着,与DCM的随机变体相比,生成模型并不明确表示神经元活动的内源性波动,也没有随机"创新"或噪声可以内在驱动神经元活动的类似方式的概念。相反,任何给定区域的BOLD信号的内源性波动被解释为来自其他区域的内在波动的线性混合。因此,虽然该模型仍然可以解释静息状态下BOLD信号的区域内源性波动,但rDCM的当前表述模糊了(潜在)状态和(测量)观察水平之间的严格分离,而这种分离通常是DCM的一个特征。这种表述使rDCM在概念上类似于频率域中的多变量自回归模型(比较Frässle et al., 2017中的讨论)。

      值得强调的是,我们不希望将rDCM的当前表述描绘为"静息态"fMRI数据的理论最优处理;相反,它应该被视为为从rs-fMRI数据获得全脑定向连接估计提供一种实用解决方案。具体而言,虽然rDCM的推导(详见Frässle et al., 2017)增强了代数可处理性和计算速度,但随之而来的状态和观察水平之间分离的丧失代表了一个概念限制,例如,在分离状态和观察噪声方面(见第4节)。在之前的工作中,我们已经表明,尽管存在固有的简化,rDCM在应用于任务数据时表现良好(Frässle, Lomakina, et al., 2018; Frässle et al., 2017, 2021)。在这项研究中,我们检验rDCM在其特定应用于rs-fMRI数据时的表面效度和构建效度。关于表面效度,我们调查rDCM的特定表述是否允许对有效连接进行真实推断,使用通过具有随机驱动输入和区域血液动力学变异性的确定性生成模型生成的模拟BOLD数据波动(见下文)。关于构建效度,我们将rDCM应用于经验fMRI数据,并将结果与谱DCM(Friston, Kahan, Biswal, & Razi, 2014)获得的结果进行比较,后者是rs-fMRI数据有效连接的另一种成熟模型。

2.2 合成数据

      首先,我们通过生成已知地面真相(即数据生成参数值)的合成rs-fMRI数据,在模拟研究中评估了rDCM的表面效度。具体而言,我们评估了四种不同线性DCM的模型参数恢复,并评估了性能作为合成数据重复时间(TR)和信噪比(SNR)的函数。每个模型都包含四个区域,但在网络架构的稀疏度方面有所不同(图1a)。更准确地说,模型1代表一个完整网络,其中所有区域通过相互连接相连;模型2包含所有可能连接的75%;模型3包含所有可能连接的50%;模型4是最稀疏的网络,只有25%的连接存在。请注意,这项模拟工作仅限于一个只有四个区域的小型网络,以便与谱DCM(Friston, Kahan, Biswal, & Razi, 2014)进行比较,后者代表rs-fMRI数据的另一种DCM变体(见下文)。

图片

图1 回归DCM (rDCM)模拟研究的流程。

(a) 用于评估rDCM对静息态数据表面效度的模拟研究的模型空间。使用了四种不同的网络结构,它们在稀疏程度上有所不同。模型1代表一个完全连接的模型,所有区域通过相互连接耦合(即12个连接参数),模型2代表一个存在75%所有连接的网络(即9个连接参数),模型3代表一个存在50%所有连接的网络(即6个连接参数),模型4代表最稀疏的网络,只存在25%的所有连接(即3个连接参数)。

(b) 区域内源波动是从AR(1)过程生成的,然后用作各自模型中的驱动输入。具体来说,我们这里使用经典的确定性DCM来生成合成数据。模型参数从其先验分布中采样,然后用于生成类似于静息状态期间观察到的特征幅度和缓慢波动的合成BOLD信号时间序列。由另一个AR(1)过程生成的测量噪声被添加到预测的BOLD信号时间序列之上。

     对于每个模型,然后生成合成fMRI数据以模仿静息状态BOLD信号时间序列中观察到的特征幅度和低频波动。为此,我们遵循了之前工作中描述的既定程序(Friston, Kahan, Biswal, & Razi, 2014; Razi, Kahan, Rees, & Friston, 2015),并在SPM12(版本R7487,Wellcome Centre for Human Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk)的MATLAB函数DEM_demo_induced_fMRI.m中实现。简而言之,通过使用自回归系数为1/2的AR(1)过程,独立地为每个区域生成内源性神经元波动。内源性神经元波动被缩放到1/4的标准差。Friston, Kahan, Biswal和Razi(2014)先前确定这些值可产生真实的BOLD信号变化。然后,区域性内源波动被用作经典确定性DCM(Friston et al., 2003)的驱动输入。同样,测量噪声是从另一个AR(1)过程中独立生成的,并叠加在模拟的BOLD信号时间序列上。因此,合成静息态fMRI数据是使用与rDCM和谱DCM都不同的生成模型生成的。这种既定程序通过避免明显偏向任何一种DCM变体,确保了rDCM和谱DCM之间比较的公平基础。模拟静息态fMRI数据以模仿10分钟持续时间的实验。重要的是,BOLD信号时间序列是在各种不同的信噪比(SNR = [0.5 1 3])和重复时间(TR = [2 s, 1 s, 0.5 s])下生成的,以分别评估rDCM作为数据质量和采样率函数的性能。这里,SNR被定义为信号标准差与AR(1)类型测量噪声标准差之间的比率(即SNR = σsignal/σnoise)。

      对于四个模型中的每一个以及SNR和TR的每种组合,生成了20组不同的观察("合成受试者")。为此,每次模拟的生成("真实")参数值是从内源参数的先验分布中抽样的。太接近零的连接参数值(即|ai,j| < 0.05)被丢弃并重新抽样,以确保区域间有足够的信息传输。值得注意的是,抽样程序还包括血液动力学参数。换句话说,在我们的模拟中,合成BOLD信号时间序列在区域和受试者之间显示了血液动力学响应的变异性。这使我们能够测试rDCM是否能在生物学上真实的血液动力学变异性背景下忠实地恢复"真实"连接参数,尽管该方法简单地假设固定的HRF(Frässle et al., 2017)。

      图1b显示了内源波动和随之产生的合成BOLD信号时间序列的例子。请注意,由于血液动力学响应函数的低通滤波,BOLD信号比底层内源波动更加平滑。产生的BOLD信号时间序列在生物学上是真实的,显示了静息状态下典型观察到的特征缓慢(低频)波动。

    基于合成数据,使用Translational Algorithms for Psychiatry Advancing Science (TAPAS)工具箱中实现的rDCM工具箱中的函数tapas_rdcm_estimate.m进行模型反演。然后通过计算(i)均方根误差(RMSE)和(ii)推断和生成("真实")参数值之间的皮尔逊相关系数(r)来评估模型参数恢复,以量化估计的后验参数值与地面真相的差异程度。

2.3 实证数据

     其次,我们研究了rDCM相对于谱DCM的构建效度。为此,我们将两个模型应用于一个实证rs-fMRI数据集并比较结果。具体而言,我们利用了Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP-1)联盟收集的大型数据集,其中一项测量是rs-fMRI(Tamminga et al., 2013, 2014)。总的来说,为B-SNIP-1数据集收集了精神病患者(包括精神分裂症、分裂情感障碍和精神病性双相I型障碍)、他们的一级亲属以及人口统计学匹配的健康参与者。

2.3.1 参与者

      本研究使用的数据是由B-SNIP-1联盟作为精神病中间表型大型横断面研究的一部分获得的(Tamminga et al., 2013)。B-SNIP-1联盟包括美国的五个站点:(i)巴尔的摩,(ii)芝加哥,(iii)达拉斯,(iv)底特律和波士顿,以及(v)哈特福德。这些站点使用相同的研究方案,并通过使用相同的刺激呈现和记录设备,做出了相当大的努力来协调各站点之间的重新编码和测试条件。此外,各站点的实验人员进行了交叉培训并经常受到监督,以确保数据收集程序的可比性。详细的研究描述在其他地方提供(Tamminga et al., 2013, 2014)。

      当前的方法学研究是一个更广泛项目的前奏,该项目使用BSNIP-1数据评估全脑定向连接估计在精神病谱系背景下的临床效用。然而,将rDCM应用于这些临床问题需要首先评估其在静息态fMRI数据背景下的表面效度和构建效度。B-SNIP-1数据集的健康对照样本是评估构建效度的自然选择,因为它是在与患者数据集相同的条件下获得的。健康参与者从当地社区招募。根据家族史研究诊断标准(Andreasen, Endicott, Spitzer, & Winokur, 1977),他们终生没有精神病性疾病,也没有一级亲属有精神病或双相障碍病史。B-SNIP-1联盟总共评估了459名健康参与者。对于当前的研究,只纳入了那些:(i)拥有包含所有相关人口统计信息和神经影像数据的完整数据集,以及(ii)fMRI测量数据质量足够高的参与者(与数据质量相关的排除标准列于下文)。这产生了最终纳入我们研究的196名健康参与者样本(80名女性,116名男性;年龄:38.3 ± 12.5岁;年龄范围:15-64岁)。研究方案得到了每个当地站点机构审查委员会的批准。所有参与者在获得完整的研究描述后,在纳入之前提供了书面知情同意。

2.3.2 实验程序

      在MR扫描仪中,要求参与者注视屏幕上呈现的小十字,保持警觉,眼睛睁开并保持头部静止。这些指示旨在帮助防止参与者入睡,提供对视觉输入和眼球运动的实验控制,并减少头部运动。通过将参与者的头部放置在定制的头线圈垫中,进一步限制了头部运动。

2.3.3 数据采集

      结构和功能MRI数据在B-SNIP-1联盟的五个站点采集。这些站点包括马里兰大学医学院(巴尔的摩)、哈佛医学院联邦研究中心(波士顿)、伊利诺伊大学医学中心(芝加哥)、德克萨斯大学西南医学中心(达拉斯)和生活研究所的奥林神经精神病学研究中心(哈特福德)。参与者在不同制造商的3特斯拉MR扫描仪上进行扫描,包括GE Signa、西门子Trio、飞利浦Achieva和西门子Allegra。有关不同站点数据采集参数的全面细节,请参见补充信息S1。

2.3.4 数据预处理

      MR数据的预处理使用fMRIPrep(版本1.4.1; Esteban et al., 2019)进行,该软件基于Nipype(版本1.2.0; Gorgolewski et al., 2011),专门设计用于大规模数据集背景下的自动化高质量预处理。我们在此使用了fMRIPrep的标准预处理流程,包括以下步骤:

   T1加权(T1w)解剖图像使用N4BiasFieldCorrection(Tustison et al., 2010)进行强度非均匀性(INU)校正,该软件与ANTs 2.2.0一起分发,并在整个工作流程中用作T1w参考。然后使用Nipype实现的antsBrainExtraction工作流对T1w参考进行去颅骨处理。使用fast(Zhang, Brady, & Smith, 2001)对去颅骨后的T1w图像进行脑脊液(CSF)、白质(WM)和灰质(GM)的脑组织分割,该软件与FSL 5.0.9(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012)一起分发。使用antsRegistration(ANTs 2.2.0)通过非线性配准进行基于体积的空间标准化到MNI标准空间,使用T1w参考和T1w模板(MNI152NLin2009cAsym; Fonov, Evans, McKinstry, Almli, & Collins, 2009)的去颅骨版本。

      功能图像的预处理首先通过使用fMRIPrep的自定义方法生成参考体积(volume)(BOLD参考)及其去颅骨版本。在进行任何时空滤波之前,使用mcflirt(Jenkinson, Bannister, Brady, & Smith, 2002)估计了相对于BOLD参考的头动参数(变换矩阵,以及相应的六个旋转和平移参数)。执行切片时间校正以解决不同切片之间采集时间的差异。基于fMRIPrep中的无场图方法(Wang et al., 2017)估计了用于校正易感性畸变的变形场。该程序在非线性配准方案中使用来自同一受试者的T1w参考作为未失真目标。为了最大化EPI扫描的T2*对比度与T1w参考之间的相似性,后者的强度被反转。为了规范化变形场的优化,位移被限制为仅在相位编码方向上非零,并且位移的大小用平均场图模板(Treiber et al., 2016)进行调制。基于估计的易感性畸变,通过将功能图像重采样到其原始空间,通过单个复合变换来校正头动和易感性畸变,从而计算未变形的BOLD图像,以实现与解剖参考更准确的协配准。随后使用flirt(Jenkinson & Smith, 2001)与基于边界的配准代价函数(Greve & Fischl, 2009)进行与T1w参考的协配准,该函数在FSL 5.0.9(Jenkinson et al., 2012)中实现。配准配置为9个自由度,以解释BOLD图像中剩余的畸变。然后,通过利用T1w参考空间标准化(见上文)获得的变形,将校正和协配准后的功能图像标准化到MNI标准空间(MNI152NLin2009cAsym; Fonov et al., 2009)。

2.3.5 混杂回归量的估计

      从功能图像中,fMRIPrep计算了几个可能产生混杂影响的时间序列,这些序列可以随后(在提取BOLD信号时间序列期间)用作混杂回归量,以校正无关的方差。在这里,我们将只关注本分析中使用的那些混杂回归量;有关fMRIPrep估计的所有混杂回归量的全面列表,请参见其他地方(Esteban et al., 2019)。

     简而言之,使用它们在Nipype中的实现,根据Power等人(2014)的定义计算了帧间位移(FD)和DVARS(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012)。此外,在CSF、WM和全脑掩模内提取了三个全局信号。此外,在预处理过程中获得的头动估计(平移和旋转)被用作混杂回归量。从头动估计和全局信号导出的混杂回归量通过包含每个的时间导数和二次项进行了扩展(Friston, Williams, Howard, Frackowiak, & Turner, 1996; Satterthwaite et al., 2013)。此外,FD超过0.5 mm或标准化DVARS超过1.5的帧被注释为运动离群值,并使用棒状回归量进行标记。最后,编码128秒截止的离散余弦集的回归量被用于高通滤波。

2.3.6 排除标准

      除了fMRIPrep,我们还使用MRIQC(版本0.15.1; Esteban et al., 2017)对神经影像数据进行质量控制。具体来说,我们使用默认参数运行MRIQC,但FD阈值调整为0.5 mm除外。如果MRIQC得出的以下任何图像质量指标高于/低于指定阈值,则将参与者排除在进一步的有效连接分析之外。对于结构图像,排除标准定义为:(i) "QI1" >0.005,(ii) "overlap_tpm_csf" <0.1,(iii) "overlap_tpm_gm" <0.3,和(iv) "overlap_tpm_wm" <0.45。简而言之,"QI1"表示使用Mortamet等人(2009)描述的算法评估的伪影损坏体素的比例。此外,"overlap_tpm_*"表示从解剖图像估计的组织概率图(TPMs)与MNI152NLin2009cAsym模板对应图之间的重叠。对于功能图像,排除标准指定为:(i) "aqi" >0.025,和(ii) "fd_perc" >20.0。简而言之,"aqi"是AFNI的平均质量指数,由3dTqual程序计算,"fd_perc"表示相对于整个时间序列,FD超过FD阈值的扫描百分比。指标的完整描述可从https://mriqc.readthedocs.io/en/latest/measures.html获得。

2.3.7 时间序列提取:小型网络

     为了评估rDCM在应用于静息态fMRI数据时的构建效度,我们从两个角度检验了静息状态下的功能整合:rs-fMRI中的模式和节点(Friston, Kahan, Razi, Stephan, & Sporns, 2014)。首先,我们检查了人脑关键内在网络之间的有效连接(即模式)。具体来说,我们研究了在休息和内部导向任务期间参与的任务负相关DMN与在外部导向任务期间参与的任务正相关网络之间已建立的反相关。这些反相关被提出作为静息状态期间内源性或自发波动的基本特征(Fox et al., 2005; Raichle, 2015; Smith et al., 2009;但请参见第4节和Fox, Zhang, Snyder, & Raichle, 2009)。

      为此,我们在第一步选择了四个感兴趣的模式,包括DMN(默认模式网络)(Buckner et al., 2008; Raichle, 2015)、DAN(背侧注意网络)(Corbetta & Shulman, 2002; Fox et al., 2006)、SAN(突显网络)(Dosenbach et al., 2007; Menon & Uddin, 2010)和CEN(Spreng et al., 2010; Spreng et al., 2013)。通过利用这些RSN先前发表的模板(Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012)创建了四个RSN中每个的掩模,并在图2a中显示。

图片

图2 B-SNIP-1静息态数据实证分析的掩模。

     (a) 包含静息状态四个关键内在网络(即模式)的掩模。具体来说,我们包括了默认模式网络(DMN;黄色)、背侧注意网络(DAN;橙色)、突显网络(SAN;红色)和中央执行网络(CEN;紫色)。

    (b) 包含静息状态三个关键内在网络(DMN、DAN和SAN)15个子组件的掩模。

对于DMN(蓝色系):后扣带皮层(PCC)、前内侧前额叶皮层(aMPFC)、左右角回(lAG和rAG)。

对于SAN(黄色系):背侧前扣带皮层(dACC)、左右前岛叶(lAI和rAI)、左右前额叶皮层(lPFC和rPFC)。

对于DAN(红色系):左右额叶眼区(lFEF和rFEF)、左右下额回(lIFG和rIFG)、左右下顶叶沟(lIPS和rIPS)。所有掩模均取自Shirer等人(2012)发表的模板。

      在第二步中,我们不仅在整个网络的层面,还在这些网络的区域组成(节点)层面研究了静息状态下的有效连接。为此,我们将自己限制在DMN、DAN(背侧注意网络和SAN(突显网络),这与Zhou等人(2018)关于RSN层级组织的先前工作一致。与Zhou等人(2018)一致,我们将三个关键内在网络细分如下:对于(核心)DMN,我们识别了四个区域:后扣带皮层(PCC)、前内侧前额叶皮层(aMPFC)以及左右角回(lAG和rAG)。对于DAN,我们识别了6个区域:左右额叶眼区(lFEF和rFEF)、左右下额回(lIFG和rIFG)以及左右下顶叶沟(lIPS和rIPS)。对于SAN,我们识别了五个区域:背侧前扣带皮层(dACC)、左右前岛叶(lAI和rAI)以及左右前前额叶皮层(lPFC和rPFC)。这产生了总共15个感兴趣区域(ROIs),从中提取BOLD信号时间序列。同样,我们利用Shirer等人(2012)提供的模板作为相应ROI的掩模(图2b)。更具体地说,我们利用了Shirer等人(2012)通过将模式细分为其子组件而获得的相应掩模。

     描绘内在网络的组成部分允许对静息状态下的有效连接进行更细致的分析,并解开网络内和网络间的功能整合。考虑到网络规模的增加,因此自由连接参数的数量也增加,这也为rDCM提供了一个更具挑战性的测试场景。话虽如此,产生的网络规模仍然比使用rDCM可能的规模小一个数量级。然而,为了评估构建效度,我们故意将自己限制在相对较小的网络中,以便允许rDCM和谱DCM之间的比较(但请参见下文关于将rDCM应用于超过200个区域的全脑网络rs-fMRI数据的应用)。

      对于两种分析流程("模式"和"节点"),BOLD信号时间序列被提取为相应掩模内所有体素的第一特征向量。时间序列进行了均值中心化,并移除了与混杂因素相关的方差(通过回归使用包含在一级GLM中的所有无关回归量)。

2.3.8 时间序列提取:全脑网络

      最后,为了证明rDCM可以在全脑水平推断静息状态下的有效连接模式,我们利用人类脑网络组图谱作为全脑分区方案(Fan et al., 2016)。脑网络组图谱代表一种基于扩散加权成像(DWI)数据得出的基于连接的分区。简而言之,该图谱包括246个不同的区块(每个半球123个),包括210个皮层和36个皮层下区域。由于原始功能图像中的信号缺失(特别是在靠近颅底的下颞叶区域),无法为脑网络组图谱定义的所有区域提取BOLD信号时间序列。总的来说,在所有参与者中可以提取221个区域。然而,为了确保网络的半球间一致性,我们通过排除仅存在于一个半球的区域进一步减少了这个集合。

     这产生了总共212个脑区,可以从每个参与者那里获得合理的BOLD信号时间序列。与小型网络分析一样,BOLD信号时间序列然后被提取为相应掩模内所有体素的第一特征向量。时间序列进行了均值中心化,并移除了与混杂因素相关的方差(通过回归使用包含在一级GLM中的所有无关回归量)。

2.3.9 rDCM分析

      前一步骤提取的BOLD信号时间序列随后被用于使用rDCM进行后续的有效连接分析。为此,我们构建了完全连接的网络,其中所有模式/区域通过相互连接相互耦合。这产生了4模式网络的16个自由参数和15节点网络的225个自由参数(所有可能的区域间连接和抑制性自连接),以及全脑网络的18,260个自由参数(脑网络组图谱结构连接组中存在的所有区域间连接和抑制性自连接)待估计。同样,模型反演是通过利用TAPAS中实现的rDCM工具箱中的例程tapas_rdcm_estimate.m来执行的。对于小型网络,然后将使用rDCM获得的参数估计与使用相同BOLD信号时间序列的谱DCM(SPM12;版本R7487)获得的参数估计进行比较。为此,进行了两项分析:首先,我们通过计算两种DCM变体的组平均后验参数估计之间的皮尔逊相关来评估组水平的参数估计的一致性。其次,我们通过为每个连接单独计算两种DCM变体的个体后验参数估计之间的皮尔逊相关,研究了个体水平(而不是组水平)的参数估计的一致性。关联的显著性通过p <.05的阈值来量化。请注意,对于全脑网络,无法进行rDCM和谱DCM之间的比较。

3 结果

3.1 模拟

3.1.1 表面效度

     首先,我们进行了全面的模拟研究,以评估rDCM在建模静息态fMRI数据方面的表面效度。为此,我们测试了rDCM是否能在合成数据的各种信噪比(SNR)和重复时间(TR)设置下,恢复四个不同的四区域网络(图1)中的生成("真实")参数值。

     总的来说,对于所有四种网络架构,在广泛的SNR和TR设置范围内都能忠实地恢复模型参数值(图3a、表1和图S1)。具体而言,所有测试情况下的均方根误差(RMSE)都低于0.15。平均而言,我们发现在最具挑战性的高测量噪声(SNR = 0.5)和低采样率(TR = 2 s)情况下,平均RMSE从模型1的0.09到模型4的0.04不等。需要注意的是,绝对RMSE值难以解释,因为它取决于数据的缩放;因此,值应该只以相对方式解释,因为它们允许比较不同的数据设置(即SNR、TR)以及不同的DCM变体。在低SNR-慢TR情况下,平均皮尔逊相关系数(r)从模型1的0.70到模型4的0.95不等,因此显示出与RMSE高度一致的模式。值得注意的是,平均是通过(i)使用Fisher r-to-z变换将个别相关系数转换为z空间,(ii)在z空间计算95%置信区间的均值以及下限和上限,最后(iii)将估计值转换回r空间来执行的。总的来说,我们观察到模型参数恢复对网络稀疏性的(预期)依赖性,最简单的模型4(具有最少的自由参数)观察到最准确的结果(图3a)。此外,我们观察到模型参数恢复性能强烈依赖于数据质量,这表明rDCM可以对(合成)BOLD信号时间序列的较高SNR设置更忠实地推断连接强度。对于采样率(即TR)也观察到类似的效果。具体来说,rDCM的模型参数恢复性能随着更快的TR设置而改善,尽管这不如SNR的效果那么明显(见图S1)。观察到的模型参数恢复性能对SNR和TR设置的依赖性与先前在任务相关数据背景下对rDCM的模拟分析一致(Frässle, Lomakina, et al., 2018; Frässle et al., 2017)。

图片

图3 展示了回归DCM和谱DCM的模型参数恢复情况。

(a) 回归DCM (rDCM)的合成静息态fMRI数据模型参数恢复,以推断和"真实"数据生成参数值之间的均方根误差(左)和皮尔逊相关系数(右)表示。

(b) 谱DCM的相应结果。

每个彩色点代表单个合成受试者的RMSE或皮尔逊相关系数。黑点表示所有20个合成受试者的平均RMSE或平均皮尔逊相关系数。注意,个体皮尔逊相关系数的平均是在z空间中进行的(见正文)。结果显示了四种不同的网络架构,其中模型1是最复杂的(完整)模型,模型4是最稀疏的网络。此外,结果显示了一个示例重复时间(TR)为2秒,以及三种不同的信噪比(SNR):0.5(红色)、1(橙色)和3(黄色)。

表1列出了回归DCM和谱DCM的模型参数恢复详细数据。表格包含了不同模型、SNR条件下的RMSE和皮尔逊相关系数的均值及95%置信区间。

图片

注:表1展示了回归DCM(rDCM)和谱DCM对合成静息态fMRI数据的模型参数恢复情况,以推断和"真实"数据生成参数值之间的均方根误差(左)和皮尔逊相关系数(右)表示。个体皮尔逊相关系数的平均以及95%置信区间(CI)的计算是通过(i)使用Fisher r-to-z转换将个别相关系数转换到z空间,(ii)在z空间计算均值以及95% CI的上下限,最后(iii)将估计值转换回r空间来实现的。结果报告了四种不同的网络架构,其中模型1是最复杂的(完整)模型,模型4是最稀疏的网络。此外,结果报告了一个示例重复时间(TR)为2秒,以及三种不同的信噪比(SNR):0.5、1和3。

3.1.2 与谱DCM的比较

     在第二步中,我们将rDCM的模型参数恢复性能与谱DCM(Friston, Kahan, Biswal, & Razi, 2014)获得的结果进行了比较,后者代表了一种适合建模静息态数据的fMRI的DCM替代变体。重要的是,谱DCM已经在表面效度(Friston, Kahan, Biswal, & Razi, 2014)、构建效度(Razi et al., 2015)和测试-重测可靠性(Almgren et al., 2018)方面进行了评估。因此,谱DCM作为一个有用的基准,可以用来挑战rDCM。

      谱DCM拟合了与之前用于rDCM完全相同的合成BOLD信号时间序列。如前所述,谱DCM的模型参数恢复随着网络稀疏性的增加而改善(图3b和表1)。然而,谱DCM的模型参数恢复对合成fMRI数据特征的依赖性不太明显:虽然没有观察到对数据质量(即SNR)的明显依赖性,但模型参数恢复显示出随着采样率的增加而改善的趋势(见图S2),这与先前的工作一致(Friston, Kahan, Biswal, & Razi, 2014)。在比较两种DCM变体的参数恢复性能时,总体上,rDCM表现优于谱DCM。更具体地说,rDCM和谱DCM在最简单的模型4上表现相当,而对于所有其他网络架构,rDCM在RMSE和皮尔逊相关系数方面都优于谱DCM。这种模式在所有SNR和TR设置中都观察到。

      总之,我们的模拟分析为rDCM在相对广泛的SNR和TR设置范围内应用于合成静息态fMRI数据的表面效度提供了证据(图S1和S2)。

3.2 实证分析:4模式网络

3.2.1 静息状态下的有效连接

      接下来,我们使用一个实证rs-fMRI数据集,调查了rDCM与谱DCM相比的构建效度。我们在这里使用了前面描述的来自B-SNIP-1联盟(Tamminga et al., 2013)的196名健康参与者(见第2节)。

      首先,我们研究了静息状态的四个关键模式(图2a)之间的有效连接,即DMN(默认模式网络)、DAN(背侧注意网络)、SAN(突显网络)和CEN(中央执行网络)。使用rDCM在完全连接的网络中估计了个体连接参数。模型反演产生了生物学上合理的连接模式(图4a)。具体来说,我们观察到DMN(代表任务负相关网络)与DAN和SAN(代表任务正相关网络)之间存在显著的抑制性传入(向内)和传出(向外)连接。此外,我们观察到DAN和SAN之间存在兴奋性的相互连接。有趣的是,CEN对DMN施加了相对强烈的兴奋性影响,同时从DMN接收到(较弱的)正面影响。此外,CEN与DAN呈正相关,与SAN呈负相关。

图片

图4 展示了静息状态下关键模式之间的有效连接。

(a) 使用回归DCM (rDCM)推断的静息状态下的组平均后验参数估计。

(b) 使用谱DCM (spDCM)推断的结果。注意,为了更容易看到两种DCM变体的组平均连接估计之间的相关性,颜色按照每种方法的最大值进行了缩放。因此,我们为两种DCM变体使用了略有不同的颜色刻度以便说明。

(c) rDCM和spDCM之间组水平参数平均值的一致性。显示了组平均区域间连接估计(上)以及它们之间的皮尔逊相关系数(r)(下)。点的颜色使用rDCM的颜色刻度。

(d) 每个连接的个体参数估计的一致性;这里显示了两种DCM变体之间关联最弱(左)和最强(右)的连接。点的颜色使用rDCM的颜色刻度。

(e) 4模式网络所有12个连接的相关系数范围。每个彩色点代表一个单独的区域间连接的皮尔逊相关系数,黑点表示所有连接的平均皮尔逊相关系数。注意,个体皮尔逊相关系数的平均是在z空间中进行的(见正文)。

      基于后验参数估计,可以计算层级强度度量,即静息状态四个内在网络中每个网络的平均绝对传出和传入连接之差。这种方法已被先前研究RSN层级组织的DCM研究使用(Zhou et al., 2018),类似于分析猴子大脑层级投射(Goulas, Uylings, & Stiers, 2014)和人类前额叶皮层层级组织(Nee & D'Esposito, 2016)所使用的方法。重要的是,这种"层级"定义不应与其他涉及前向和后向连接的层特异性的解释相混淆(Felleman & Van Essen, 1991; Markov et al., 2014)。相反,当前定义简单地指一种模式对其他模式施加影响的程度(关于层级替代定义的全面综述,见Hilgetag & Goulas, 2020)。总层级强度表明四个网络呈层级组织,DMN位于底部(-0.12),主要作为接收端,而其他任务正相关网络排名更高(DAN: 0.05, SAN: 0.02, CEN: 0.05),主要作为神经驱动器。这一发现与先前关于RSN层级组织的观察一致(Sridharan, Levitin, & Menon, 2008; Zhou et al., 2018)。

3.2.2 与谱DCM的比较

     与上述模拟一样,我们再次将rDCM的发现与使用相同BOLD信号时间序列的谱DCM获得的结果进行了比较。我们观察到,在组水平上,有效连接模式在两种DCM变体之间高度一致(图4b)简而言之,谱DCM也揭示了DMN与DAN(背侧注意网络)和SAN(突显网络)之间显著的抑制性传入和传出连接,以及DAN和SAN之间的兴奋性相互连接。谱DCM和rDCM结果之间唯一的(定性)差异在于CEN如何整合到这个网络中。虽然与rDCM结果一致,从CEN到DMN和DAN的传出连接是兴奋性的,但从DMN和DAN到CEN的传入连接是抑制性的。关于CEN和SAN之间的耦合,谱DCM和rDCM再次产生了一致的结果。两种DCM变体之间的这种相似性也体现在组水平区域间连接估计之间非常高的皮尔逊相关系数(r = .85, p <.001; 图4c)。

      在第二步中,我们调查了每个连接在个体水平(而不是组水平)上参数估计的一致性。在个体水平上,连接在两种DCM变体之间的一致性程度上显示出一些变异性。虽然对于某些连接,rDCM和谱DCM参数估计之间的皮尔逊相关相对较弱,如从CEN到DAN的连接(r = .13, p = .06; 图4d,左),但其他连接显示出更高的一致性,如从DAN到CEN的连接(r = .67, p <.001; 图4d,右)。总体而言,跨连接平均的平均皮尔逊相关系数为r = .38 [.27 .48](图4e)。同样,平均是通过(i)使用Fisher r-to-z转换将个别相关系数转换到z空间,(ii)在z空间计算均值以及95%置信区间的上下限,最后(iii)将估计值转换回r空间来执行的。尽管观察到变异性,我们的结果表明,在连接之间,有显著证据表明两种DCM变体在个体水平上的参数估计是一致的,这是通过对相关系数进行Fisher r-to-z转换后使用单样本t检验评估的(t[1,11] = 6.40, p <.001)。

3.3 实证分析:15节点网络

3.3.1 静息状态下的有效连接

      接下来,我们旨在研究静息状态下的有效连接,不仅在整个网络的水平上,而且在这些网络的区域组成部分的水平上。为此,我们将分析限制在DMN(默认模式网络)、DAN(背侧注意网络)和SAN(突显网络),并与Zhou等人(2018)一致,将这三个网络分为15个子组成部分(图2b)。这产生了DMN的四个区域(PCC、aMPFC、lAG和rAG),SAN的五个区域(dACC、lAI、rAI、lPFC和rPFC),以及DAN的六个区域(lFEF、rFEF、lIFG、rIFG、lIPS和rIPS)。

      与4模式网络一样,使用rDCM在完全连接的网络中估计了个体连接参数,这产生了生物学上合理的连接模式(图5a)。从我们的结果中第一个明显的观察是平均内源连接矩阵的清晰模块化结构,其中属于同一RSN的区域组合在一起,并且几乎完全显示正(兴奋性)的网络内交互作用。相反,网络间连接(即源自一个RSN中的区域并终止于另一个RSN中的区域的连接)总体上较弱且更加可变,显示抑制性和兴奋性影响。更准确地说,DMN区域与SAN和DAN区域之间的传入和传出连接仍然主要是负的,而两个任务正相关网络之间的连接更加多样化。

图片

图5 展示了静息状态下关键脑区之间的有效连接。

(a) 使用回归DCM (rDCM)推断的静息状态下的组平均后验参数估计。

(b) 静息态网络(即DMN、DAN和SAN)之间的平均连接强度,计算为源自一个静息态网络并终止于另一个网络的所有连接强度的平均值。

(c) 使用谱DCM (spDCM)推断的静息状态下的组平均后验参数估计。注意,为了更容易看到两种DCM变体的组平均连接估计之间的相关性,颜色按照每种方法的最大值进行了缩放。

(d) rDCM和spDCM之间组水平参数平均值的一致性。显示了组平均区域间连接估计之间的皮尔逊相关系数(r)。

(e) 每个连接的个体参数估计的一致性;这里显示了两种DCM变体之间关联最弱(左)和最强(右)的连接示例。

(f) 15节点网络所有210个连接的相关系数范围,以及静息态网络内所有连接和静息态网络间所有连接的单独结果。

      为了允许这种节点分析与之前的模式分析直接比较,我们计算了网络之间的平均连接强度(图5b)。例如,源自DAN(背侧注意网络)节点并终止于DMN(默认模式网络)节点的所有连接的强度被平均,以得出从DAN到DMN的网络间连接强度。这一分析表明,在网络间水平上,15节点网络的结果与先前4模式网络分析获得的结果高度一致。具体来说,我们再次观察到DMN通过强抑制性连接与其他两个RSN相互连接,而两个任务正相关网络(即DAN和SAN)显示兴奋性耦合(尽管非常弱)。

      最后,基于这些网络间连接(图5b),我们再次计算了层级强度,即三个RSN之间平均绝对传出和传入连接的差异。与先前的分析一样,总层级强度表明三个网络呈层级组织,DMN位于底部(-0.007),主要作为接收端,两个任务正相关网络排名更高(DAN: 0.006, SAN: 0.0007),主要作为神经驱动器。事实上,三个RSN甚至显示出与先前模式分析完全相同的排序——考虑到底层网络的差异,这是一个显著的观察——因此再次与先前的工作一致(Sridharan et al., 2008; Zhou et al., 2018)。

3.3.2 与谱DCM的比较

     如前所述,我们将rDCM的实证发现与使用相同BOLD信号时间序列的谱DCM获得的结果进行了比较。组水平有效连接模式再次在两种DCM变体之间高度一致(图5c)。具体来说,谱DCM揭示了(平均)内源连接矩阵的相同模块化结构,同一RSN区域之间存在显著的兴奋性连接,而网络间连接呈现更多样化的模式。两种DCM变体之间的相似性再次体现在组水平连接估计之间非常高的皮尔逊相关系数(r = .87, p <.001; 图5d)。

     在个体水平上,连接在两种DCM变体之间的一致性程度上再次表现出变异性。rDCM和谱DCM参数估计之间的相关从几乎不存在(r = −.04, p = .58,左IFG到右IFG的连接,图5e左)到稳健(r = .45, p <.001,左IPS到dACC的连接,图5e右)不等,后者代表显著相关。总体而言,跨所有连接平均的平均相关系数为r = .23 [.22 .24](图5f),因此与4模式网络相比略有下降。尽管如此,rDCM和谱DCM之间的一致性显著大于零,这是通过单样本t检验评估的(t[1,209] = 34.67, p <.001)。值得注意的是,两种DCM变体之间的一致性在模块内连接与模块间连接之间没有显著差异(t[1,208] = −0.75, p = .46),这表明这两种类型之间没有系统性差异。如前所述,相关系数的平均以及统计检验是在z空间中进行的——即在对个别相关系数进行Fisher r-to-z转换之后。

      总之,这些结果与4模式网络获得的结果非常相似,尽管15节点网络在个体水平上的相关总体上略低。

3.4 实证分析:全脑网络

      在小型网络中建立了rDCM对rs-fMRI数据的表面效度和构建效度后,我们评估了rDCM在推断全脑水平静息态有效连接方面的实际效用。为此,我们利用Brainnetome图谱作为全脑分区方案,使用覆盖整个皮层的212节点网络(详见第2节)。Brainnetome图谱提供的结构连接信息用于约束网络,结果需要估计18,260个有向连接(图6a)。

图片

图6 展示了静息状态下全脑的有效连接。

(a) 全脑rDCM分析使用了人类脑网络组图谱,该图谱提供了皮层和皮层下区域的全脑分区以及这些区域之间的结构连接信息。

(b) 使用rDCM推断的静息状态下有向连接强度的组平均后验估计。结果显示为完整的邻接矩阵(左)和最高(绝对)权重的前2,000个连接的连接图(右)。连接图使用Circos制作。区域分为不同的集合,包括额叶(FRO)、颞叶(TEM)、顶叶(PAR)、岛叶(INS)、扣带回(CNG;在脑网络组命名法中,这组区域被称为"LIM"[边缘系统]。然而,由于"边缘系统"一词定义不明确(Kotter & Stephan, 1997),且"LIM"仅由扣带回区域组成,我们更倾向于将这组区域称为"CNG"[扣带回])、枕叶(OCC)和皮层下(SUB)。

(c) (绝对)内源连接参数在自然空间(上)和对数空间(下)中的分布。

(d) 基于前2,000个连接的内源连接矩阵的边加权弹簧嵌入((边加权弹簧嵌入)算法,这是一种网络可视化技术)。边加权弹簧嵌入投影使用Cytoscape计算。

     将rDCM应用于这212个区域的rs-fMRI数据产生了生物学上合理的连接模式(图6b)。平均内源连接矩阵显示了清晰的模块化结构,同一叶(如额叶、枕叶)内的区域之间强烈连接(图6b,左)。具体来说,同一叶内区域之间的连接更强且多为正(兴奋性),而不同叶之间区域的连接更加可变(即显示抑制性和兴奋性影响)。这种全脑水平的模块化结构与我们对静息态节点之间连接的分析一致。此外,我们发现虽然大多数强连接都在半球内,但我们也观察到强烈的半球间交互作用,主要在同源区域之间(图6b,右)。

检查(绝对)内源连接参数的分布揭示了对数正态权重分布,连接强度在几个数量级上变化(图6c)。这表明平均内源连接矩阵中弱连接(对应低频影响)占主导地位。同时,对数正态分布突出了延伸尾部的存在,表明有效连接组中存在许多强连接(即高频影响)。这一发现与先前关于小鼠皮层(Oh et al., 2014; Wang, Sporns, & Burkhalter, 2012)和猕猴皮层连接组(Markov et al., 2013; Markov, Ercsey-Ravasz, et al., 2014)中解剖连接权重呈对数正态分布的报告一致。rDCM参数估计分布中从低频到高频影响的衰减也与rs-fMRI数据的一般谱特征广泛一致,其中低频占主导地位(Chen & Glover, 2015; Kalcher et al., 2014; Niazy, Xie, Miller, Beckmann, & Smith, 2011)。

     最后,当将内源连接矩阵显示为边加权弹簧嵌入投影时,静息态有效连接的模块化结构变得更加明显。简而言之,边加权弹簧嵌入将强烈交互的节点放置在彼此附近,通过将每个节点视为由弹簧(边)连接的钢环,从而形成机械系统(Kamada & Kawai, 1989)。然后将最佳布局定义为使系统总能量最小化的布局。将边加权弹簧嵌入应用于平均内源连接矩阵的前2000个连接揭示了清晰的模块化结构,同一集合的节点倾向于聚集在一起(图6d)。这对于枕叶(红色)、顶叶(黄色)和额叶(蓝色)的区域尤为明显。此外,内源连接矩阵的弹簧嵌入投影表明从枕叶经过顶叶到额叶区域存在层级组织。这与广泛认可的大脑组织观点一致,即从单模态(如视觉)到跨模态(如额叶)区域的层级(Mesulam, 1998)。一些叶(如颞叶)的区域没有明确整合到这个层级中,可能是由于低于所选阈值的较弱连接强度占主导地位。值得注意的是,这里显示的弹簧嵌入投影应该仅作为定性说明,因为确切的布局将取决于,例如,网络的密度(因此阈值化)和边加权弹簧嵌入算法的确切初始化。尽管如此,我们验证了这里观察到的整体模式在一系列不同设置下都成立。

3.5 计算负担

      为了概述计算效率,我们报告了不同分析的运行时间。这些值应仅作粗略指示,因为运行时间将取决于所使用的具体硬件。在这里,对于所有分析,我们在苏黎世联邦理工学院的Euler集群上使用了单个处理器核心。

      首先,rDCM对小型网络大约需要1秒,无论网络架构如何。更具体地说,对于4模式网络(16个自由参数:12个连接和4个抑制性自连接参数),模型反演平均需要0.48 ± 0.07秒(范围:0.35-0.77秒),而对于15节点网络(225个自由参数:210个连接和15个抑制性自连接参数),模型反演平均需要0.62 ± 0.10秒(范围:0.47-1.32秒)。对于全脑网络(18,260个自由参数:18,048个连接和212个抑制性自连接参数),模型反演平均需要132.30 ± 20.26秒(范围:90.63-175.30秒)。这突出了rDCM应用于rs-fMRI数据的计算效率,并说明该模型随区域数量的增加而优雅扩展,这与先前关于任务fMRI的工作一致(Frässle, Lomakina, et al., 2018; Frässle et al., 2017)。

      相比之下,虽然谱DCM对小型网络也具有计算效率,但运行时间要长得多。具体来说,对于4模式网络(30个自由参数:12个连接、4个抑制性自连接、6个血液动力学和8个内源噪声参数),模型反演平均需要14.07 ± 5.99秒(范围:8.88-48.26秒),而对于15节点网络(261个自由参数:210个连接、15个抑制性自连接、17个血液动力学和19个内源噪声参数),模型反演已经平均需要3,031 ± 1,551秒(范围:819-12,157秒)。

      总之,尽管两种DCM变体的小型网络自由参数数量相当,但谱DCM的运行时间长达三个数量级。具体来说,我们的运行时间分析表明,与谱DCM相比,rDCM更优雅地扩展到大型网络。在这里,我们仅将rDCM应用于超过200个区域的分区的rs-fMRI数据;这是因为有报道称谱DCM应用于36个区域的小得多的网络时,每个受试者需要21-42小时的运行时间(Razi et al., 2017)。

总结:

     本研究评估了回归DCM (rDCM)在推断静息态fMRI数据有效连接方面的表面效度和构建效度。rDCM的主要优势包括:

1. 可靠性:通过模拟研究证明rDCM能从合成数据中忠实恢复已知参数值,即使在低信噪比和低采样率条件下也表现良好。

2. 生物学合理性:应用于实证数据时,rDCM产生了符合先前研究的结果,揭示了DMN的抑制性连接和任务正相关网络间的兴奋性耦合。

3. 与谱DCM的一致性:rDCM估计与谱DCM结果在定量上相似,支持其构建效度。

4. 计算效率:rDCM比谱DCM计算效率高出3个数量级,能够扩展到大规模网络。

5. 全脑分析能力:rDCM可以在几分钟内提供合理的全脑有效连接模式。

6. 临床应用潜力:rDCM在计算精神病学和神经病学领域应用前景广阔,可从rs-fMRI数据中推断全脑有效连接模式。

7. 大规模数据集分析:rDCM适用于分析大规模rs-fMRI数据集。

8. 模块化结构识别:rDCM能揭示预期的模块化连接结构。

9. 连接强度分布:rDCM推断的连接强度遵循与解剖研究一致的对数正态分布。

     尽管存在一些局限性(如不考虑血液动力学变异性、只能得到静态连接估计等),rDCM在模拟rs-fMRI数据方面展现了良好的表面效度和构建效度。未来的发展目标包括引入更灵活的血液动力学模型、明确考虑内源神经元波动,以及引入动态连接估计。总的来说,rDCM为研究静息态大脑功能整合提供了一个高效、可扩展的工具。

     

结论:

       尽管存在这些限制,我们的结果证明了rDCM在建模rs-fMRI数据方面的表面效度和构建效度:它们展示了从模拟数据中良好恢复已知连接强度的能力,说明rDCM可以从实证rs-fMRI数据中推断生物学上合理的有效连接模式,并表明rDCM估计与谱DCM(一种成熟的rs-fMRI DCM变体)的结果一致。重要的是,由于我们方法的计算效率,rDCM可以优雅地扩展到大型网络,并提供合理的全脑静息态有效连接模式。这为基于静息状态功能整合的有向测量的全脑连接组学开辟了有前景的新途径。这种全脑有效连接的读出不仅有望为健康人脑的组织原理提供新的见解,而且可能对揭示病理生理机制和实现对临床结果的单个受试者预测具有价值(Frässle et al., 2020)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值