无痛静息态功能连接预测个体疼痛敏感度

个体对疼痛的感知差异在基础和临床研究中引起了关注,因为改变的疼痛敏感性既是许多疼痛病症的特征,也是其风险因素。然而,个体对疼痛的敏感性如何反映在无痛静息状态的大脑活动和功能连接性中,尚不清楚。在这里,我们确定并验证了无痛静息状态的功能性大脑连接组中一个网络模式,该模式可以预测个体间的疼痛敏感性差异。我们的预测性网络签名允许在不应用任何疼痛刺激的情况下评估个体对疼痛的敏感性,这在无法获得可靠行为疼痛报告的患者中可能具有价值。此外,作为超脊髓神经对疼痛敏感性贡献的直接、无创性读出,它可能对转化研究以及镇痛治疗策略的开发和评估具有影响。本文发表在Nature communications杂志。

引言

疼痛是一种主观的、不愉快的感觉和情绪体验,其在个体之间存在高度的差异性。在临床实践中,个体对疼痛的感知差异是关键的研究对象,因为改变的疼痛敏感性既是许多疼痛疾病的特征,也是其风险因素。在过去的几十年中,大脑影像学揭示了支持急性疼痛体验和疼痛敏感性的大脑活动的丰富性和复杂性。然而,决定个体对疼痛感知差异的中枢神经机制仍然知之甚少,部分原因在于过去的神经影像学研究主要集中在瞬时的(急性或慢性)疼痛体验上。常见的做法是仅将无痛阶段用作基线参考,这使得研究本质上无法观察到与疼痛处理和感知密切相关但并非与疼痛事件同时发生的大脑活动组分。

已知,静息态(即不存在任何任务或刺激的状态)下的大脑活动可以反映一些,如果不是所有,任务诱导的活动模式。例如,众所周知的大规模静息态网络强烈地类似于相关任务的模式。此外,静息态活动可以预测行为表现、感知决策和相关的神经活动。考虑到静息态和任务诱导大脑活动之间的紧密联系,无痛静息态条件下的活动和功能连通性很可能反映个体对疼痛的敏感性。遵循与静息态网络相关的术语,我们将这种类型的神经活动称为疼痛敏感性的静息态网络。

这个提出的与疼痛相关的静息态网络可能已经被一些研究捕获,这些研究报道了紧接着疼痛之前的大脑活动和连通性与随后的疼痛体验有关。已知在无痛状态下,静息态功能磁共振成像(fMRI)信号的几个特征也与对伤害感受的神经反应以及由此产生的疼痛体验、对认知性能的影响,以及由于之前的疼痛体验而发生的变化有关。然而,由于以前的研究样本量小,方法学差异大(例如,关于生理和运动伪影的校正),并且缺乏验证,这种类型的静息态大脑活动的预测力和临床相关性至今仍不清楚。

绘制疼痛敏感性的静息态网络并利用其预测疼痛处理的各个方面的能力,将从基础研究和转化的角度大大推动这个领域的发展。首先,将其与实验性疼痛反应进行对比,将扩展我们对于疼痛的主观体验是如何从大脑活动中产生的理解。其次,研究假设的静息态疼痛敏感性网络是如何嵌入到更广泛的静息态大脑活动中,可以扩展我们对静息大脑复杂功能结构的知识。最后,最重要的是,基于疼痛敏感性静息态网络的疼痛敏感性的可靠、可推广且严格验证的预测,可以为个体的疼痛敏感性的非侵入性神经标记物奠定基础。这样一个基于静息大脑网络的生物标记物,可以有助于未来疼痛生物标记物复合标志的开发,这可能有助于评估一个人发展疼痛的风险,以及在实验和临床疼痛研究中对疼痛病症和镇痛治疗效果的客观描述。

在这里,我们研究了无痛静息态功能大脑连通性预测个体疼痛敏感性(定义为热痛、冷痛和机械痛阈值的复合测量)的能力,样本总共包括N = 116名年轻健康的参与者。我们首先在无痛静息态连通性中进行全脑搜索,寻找预测个体疼痛敏感性的特定特征,这个子研究只用于预测模型的训练和内部验证。然后,我们在两个在不同扫描站点获取的独立子研究中,对该方法进行预测性能、泛化能力和潜在混杂因素的前瞻性验证(外部验证)。最后,我们对预测模型进行反向映射,以确定假设网络的关键节点,以下简称为静息态疼痛敏感性网络的签名(在这里,"签名"是用来描述一种特定的、可以预测疼痛敏感性的静息态脑网络模式。简称为RPN-签名,RPN:Resting-state Pain sensitivity Network)。

方法

一般考虑因素 我们在考虑了最近对神经影像生物标记(神经标记)的推荐、要求和标准后,建立了研究设计,并由以下几点想法推动:

最大化预测性能

我们采用了标准化的预处理流程,以确保神经标记的最佳敏感性,因为足够的效应量是任何临床应用的基本要求。我们使用了高精度的图像对齐,当提取fMRI时间序列数据时,考虑了个体的解剖结构。此外,我们采纳了最近关于减少人为影响的建议和协议,并优化了我们的工作流程,以满足基于连接组分析的特殊需求。我们使用了我们自己开发的、基于nipype的开源python软件库,提供了对现有神经影像软件的统一接口,并部分重用了C-PAC和niworkflows开源项目的代码。我们采用了预测性建模(机器学习)的方法,利用静息态功能性大脑网络提供的丰富数据,并可能利用fMRI超敏感性。

评估在现实条件下的预测力

我们使用了一个预先注册的,外部验证策略,严格地将模型训练和性能评估分开。对于模型训练,我们仅使用了研究1的数据。我们在不同的研究中心,使用不同的设备和不同的研究人员,进行了两个独立的子研究(研究2和3)进行验证。我们采用了宽松的研究设置对齐方式,允许在研究中心的程序、设备、影像序列、参与者-研究者沟通语言等方面存在合理的异质性,从而在验证程序中引入合理的异质性,以确保泛化性。

确保预测是由神经信号驱动并且特异于疼痛敏感性

为了确保所提出的疼痛敏感性标记确实是由与疼痛敏感性相关的神经信号驱动的,我们评估了预测分数与各种预定义的(并预先注册的)混淆因素和验证变量的相关性。

确保结果的可获取性

我们采用了全面的预先注册,并且使方法的源代码开源,供社区自由使用。此外,我们提供一个平台独立的、易于使用的docker容器,这为使用我们的预测模型作为研究产品提供了可能,可以从任何适当的影像数据集中获取现成的疼痛敏感性预测。

参与者

总共有N=116名健康的年轻志愿者参与了三个子研究。参与者的年龄和性别在补充表1中报告。研究1涉及N1=39名参与者(与参考文献8中的样本相同)。该研究在德国波鸿鲁尔大学由MZ和TSW进行,被用作基于机器学习的疼痛敏感性预测的训练样本,同时,也作为预测的内部验证的基础。研究2和3(N2=48,N3=29)分别在德国埃森大学医院由FS和TS,以及在匈牙利塞格德大学由BK和TK进行,并作为外部验证的样本。所有三个中心的纳入标准和排除标准基本相同,列在表3中。招募和报酬政策各中心不同;研究1和2的参与者每小时获得20欧元,研究3的参与者没有报酬。金属植入物、无法取下的穿环、心脏起搏器、头/颈部位的纹身、怀孕或已知的幽闭恐惧症被视为MRI测量的禁忌症。参与者需要在实验前两小时内禁止摄入咖啡因(研究3除外),并在测试当天和前一天禁止饮酒。

表3 招募过程中的纳入和排除标准。

本研究按照《赫尔辛基宣言》进行,符合所有与人类参与者工作相关的伦理规定,已获得当地或国家伦理委员会的批准,分别在德国波鸿鲁尔大学、埃森大学医院和匈牙利ETT TUKEB)。所有参与者在测试前都已书面同意。在研究1中,成像和定量感官测试(QST)在同一天进行,在研究2和3中,平均间隔2-3天进行(详见补充表1)。MRI测量总是在QST会话之前进行。测量—功能性MRI 所有参与者都进行了高分辨率的脑结构和睁眼静息态fMRI测量。扫描参数(包括设备)因中心而异,详见表4。在测量过程中,参与者被指示保持安静和放松,不要入睡,并避免任何移动。使用泡沫填充物,以及在研究1和2中,使用气动枕头来限制头部运动。所有的解剖学MRI测量都进行了偶然发现的筛查。

表4 每个中心的MRI扫描仪和序列参数。

测量 - QST

根据QST协议,我们获取了热痛(HPT)、冷痛(CPT)和机械痛(MPT)阈值。作为额外的对照措施,我们还获取了温度(WDT)、冷度(CDT)和在研究2和研究3中获取的机械(MDT)检测阈值。所有的感觉测量都从左前臂的掌侧,腕嵴的近端获取。在QST框架内,热阈值是通过极限法确定的。为此,我们在研究1中使用MSA热刺激器(Somedic,Hörby,瑞典)和在研究2和3中使用Pathway热刺激器(Medoc Ltd.,Ramat Yishai,以色列)向皮肤施加升高和降低的温度。在所有的研究中,我们都使用了ATS热电极,皮肤表面为30x30mm,基线温度为32℃。参与者被指示通过按钮按压来表示疼痛的开始。为了减少个体间的差异,我们执行了6次而不是3次(如原始协议中的)热阈值的刺激重复。此外,第一次测量作为测试刺激被从分析中排除。HPT(热痛)和CPT(冷痛)是五个剩余阈值温度的算术平均值。使用阶梯法确定MPT(机械痛)和MDT。在参与者被指示将刺激分类为痛感或非痛感的情况下,我们以交替的方式在左前臂的掌侧施加五次增加和五次减少的刺针(MRC Systems,海德堡,德国)刺激。用von Frey filament刺激类似地评估机械检测阈值。MPT和MDT是五个升序和降序阶梯阈值运行确定的几何平均力的对数转换。

额外的测量 所有测量前,我们记录了年龄、性别、自我报告的身高、体重,以及女性参与者的最后一次月经的第一天和避孕药的使用情况。此外,对于研究1和2,我们还记录了自我报告的每周饮酒量和教育水平(小学、中学、大学)。在QST之前,参与者填写了疼痛敏感性问卷(PSQ)、疼痛灾难化量表(PCS)、状态特质焦虑量表(STAI)58、德语版抑郁量表简版(ADS-K,流行病学研究中心),以及在研究2和3中,填写了匹兹堡睡眠质量指数(PSQI)和感知压力问卷(PSQ20)。在研究2和3中,MRI和QST测量前都测量了血压。此外,对于样本1,我们从前一天进行的fMRI测试的并行实验中得到了T50值。T50表示产生50级热痛评分(在一个从0级(无痛)到100级(无法忍受的痛)的范围内)所需的温度(以°C表示)。T50值是通过对15个持续热痛刺激(持续时间:16秒)之间的反应获得的评分进行非线性(二阶多项式)插值获得的,这些刺激的温度在42.5°C和48°C之间,以伪随机网格搜索方式呈现。
疼痛敏感性的计算 预测的目标变量是一个单一的个体疼痛敏感性的综合测量,总结了HPT、CPT和MPT,如参考文献8中所定义的。 在研究1中,HPT、CPT和MPT进行了Z变换(平均中心化和标准化),并且HPT和MPT被反转(乘以-1),以便更高的Z值表示更高的疼痛敏感性。然后,计算每个参与者的Z变换变量的算术平均值,并定义为疼痛敏感性得分。在研究2和3中,应用了相同的过程,只是Z变换是基于研究1的人口平均值和标准偏差,以确保在所有研究中使用相同的比例。极端的QST值是根据参考文献28报告的95%百分位数定义的;至少在三种方式中有两种显示极端HPT、CPT或MPT值的参与者被排除。这种筛选导致在样本1、2和3中分别排除了0、3和2名参与者(附表2)。

fMRI预处理

由于基于fMRI的功能连接性易受扫描仪运动伪影的影响,适当的预处理和信号清理对成功的基于连接性的预测至关重要。所有三项研究中,静息态功能MRI数据的预处理方式都是相同的。所应用的、基于nipype的工作流程在补充图1中描述。它使用了第三方神经影像软件、从C-PAC和niworkflows软件工具适应的代码,以及内部python程序。

从解剖图像和结构图像中提取大脑,以及从解剖图像中进行组织分割,使用的是FSL bet和fast。利用ANTs将解剖图像线性和非线性地配准到1mm分辨率的MNI152标准大脑模板脑上。 功能性图像通过FSL flirt的基于边界的配准技术与解剖图像进行对齐。所有生成的变换都被储存以备后续使用。功能性图像的预处理在原始图像空间中进行,不进行重新取样。使用FSL mcflirt进行基于实时重定位的运动矫正。计算并保存了六个头部运动估计(3个旋转,3个位移)、它们的平方、它们的导数以及平方导数(这被称为Friston-24扩展66)以用于消除噪声校正。此外,根据Power的方法将头部运动总结为逐帧位移(FD)时间序列,以便在数据清除和排除中使用。运动矫正后,利用AFNI despike67对时间序列数据中的异常值(如运动尖峰)进行抑制。对蚀刻的白质图和脑室遮罩的并集进行转换到原始功能空间,并用于提取噪声信号进行解剖CompCor矫正。 在干扰回归步骤中,使用一般线性模型从时间序列数据中去除了6个CompCor参数(噪声区域时间序列的前6个主成分),Friston-24运动参数和线性趋势。对剩余数据,使用AFNI的3DBandpass进行了时间带通滤波,以保留0.008-0.08赫兹的频率带。预计使用AFNI的despike会减弱带通滤波期间残留运动伪像进入相邻时间帧的混叠效应。为了进一步减弱运动伪像的影响,可能被运动污染的时间帧,被定义为一个保守的FD > 0.15毫米的阈值,从数据中去除(也被称为清理数据)。如果平均FD超过0.15毫米,或者超过30%的帧被清理,那么参与者将被排除在进一步的分析之外。这导致了在样本1、2和3中分别排除了4名、8名和7名参与者(见补充表2)。在整个工作流程中都进行了质量控制(注册检查,地毯图,见例如补充图2-4)。
功能连接性分析 MIST多分辨率功能性大脑图谱的122个区块版本和从解剖图像中获取的灰质掩模被转换到原生功能空间。这个图谱(使用BASC方法构建,即稳定聚类的bootstrap分析)最近被显示在基于连接性的预测模型中表现良好。原生空间图谱区域被之前从解剖图像中获取并转换到功能空间的灰质掩模覆盖。使用这种图谱个体化技术,最终的区域信号将高概率地来自每个主体的灰质体素(我们为所有主体仔细手动检查了这一点),而在传统方法中,每个主体都包括了灰质和白质体素的可变比率。因此,从组织分割过程输入信息预计会减少主体间的变异性(见补充图5的示例)。将体素时间序列在这些个性化的MIST区域中取平均,并保留用于基于图的连接性分析的平均灰质信号。 为了可视化目的,将区域时间序列排序到大规模功能模块中(由7个区块的MIST图谱定义)(图1)。使用nilearn python模块,计算所有区域对(和全局灰质)之间的偏相关。使用偏相关而不是简单相关,以排除间接连接性。我们的图模型方法确保全局灰质信号在计算偏相关系数时被处理为一个混杂变量,但同时也将其视为一个感兴趣的信号,因为它可能代表警觉相关的过程。偏相关系数被组织成123乘123(122个区域+全局灰质信号)的对称连接矩阵。这些矩阵的上三角被用作基于机器学习的预测模型的特征空间。
预测模型的训练和验证 使用研究1的全脑静息态功能连接性数据(N1=35,排除所有排除项后,如参考文献8,补充表2所示)作为输入特征空间(每个参与者P=7503个特征)来预测个体的疼痛敏感性得分,导致了大P-小N的设置。 我们在scikit-learn中构建了一个机器学习管道,包括稳健的特征缩放(去除中值和用数据分位数缩放)、预选特征、选择与目标变量关系最强的K个最佳特征和一个Elastic Net回归模型(一个线性模型,以组合L1和L2范数作为正则化器)。使用弹性网是在分析之前做出的决定。我们选择弹性网的主要动机是它允许将稀疏性(L1与L2正则化)作为一个超参数进行优化,这样我们就不必对判别基础真实性的稀疏性做出任何预先假设(参见参考文献79的理由)。总的来说,机器学习管道的自由超参数是预选特征的数量(K)、L1/L2正则化的比率和正则化的权重(alpha)。使用网格搜索程序和负均方误差作为代价函数来优化超参数。K的值从10到200,以5为增量,包括[0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 0.999]用于L1/L2比率[0.001, 0.005, 0.01, 0.05, 0.1, 0.5]用于alpha。在留一验证(内部验证阶段)中进行了超参数优化。交叉验证包含了完整的机器学习管道,以避免在训练和测试样本之间引入依赖关系。注意,fMRI预处理在受试者之间是独立的,因此没有包含在交叉验证中。最优的超参数被发现是K=25,L1/L2比率=0.999和alpha=0.005。 通过将RPN-signature应用到研究2和3的fMRI数据(N2=37,N3=19,排除后,补充表2)进行了外部验证,只需应用在样本1上获取的特征变换(缩放),然后计算个体连接矩阵和样本1中获取的非零特征权重之间的点积。将结果预测与观察到的基于QST的疼痛敏感性得分进行比较,通过计算平均绝对误差(MAE)、均方误差(MSE)和解释方差。对所有这三个度量,都使用mlxtend python包获得了基于置换的p值。此外,使用条件覆盖的自助法来提供预测连接权重的p值,以帮助解释。我们构建了10000个自助样本(有替换),大小等于原始样本,由配对的大脑和结果数据组成。将带有最优超参数的预测模型拟合到每个样本。根据权重低于或高于零的比例,为每个选定的连接计算未校正的P值,如参考文献。请注意,这些p值和置信区间(补充表4)的解释仍然受限,因为它们受到特征选择过程的条件。
混杂因素分析 为了探索潜在的混杂变量,我们将预测的疼痛敏感性得分(或在样本1的情况下进行交叉验证的预测)与以下指标进行了比较:平均和中位数的FD值,清理的体积百分比,MRI和QST测量前的收缩压和舒张压(因为血压先前被报道81与机械疼痛的敏感性有关),MRI和QST测试之间的时间延迟(测试预测的时间稳定性),年龄,性别,BMI,最后一次月经的第一天至今的天数,饮酒量(单位/周),教育程度,状态和特质焦虑(STAI),抑郁症状得分(ADS-K),自我报告的疼痛敏感性(PSQ)和疼痛灾难化(PCS),感知压力(PSQ20),睡眠质量(PSQI),和非痛觉QST检测阈值(CDT,WDT和MDT,如果有的话)。此外,在研究1中,预测值与T50值以及疼痛处理大脑区域的基于MR波谱的GABA和谷氨酸/谷氨酰胺水平进行了比较(详情请参见参考文献8)。使用基于排列的线性模型测试了这些关联。
预测网络的可视化 RPN-signature的非零回归系数突出显示的预测性区域间连接,使用R包circlize展示为带图(图3)。相应的个性化脑区掩模被反向转换到标准空间,以创建特定于研究的区域概率图(反映了共注册精度和形态的个体变异性)。概率图乘以相应回归系数的和,以创建区域预测强度图,然后使用FSLeyes和MRIcroGL进行可视化。(图3)。通过对七个感兴趣区域的体素值进行总结和Z转换,进行了大尺度静息态网络参与度的分析(由MIST脑图谱定义)。使用R包ggplot2制作了极坐标图。

结果 基于功能连接的预测和多中心验证 在三个不同的成像中心进行的三个独立子研究中,总共获取了N = 116名健康志愿者的静息态功能MRI数据。神经标记物的开发基于固有的全脑功能性大脑连接性,即在没有任何明确任务的情况下,不同神经区域中的静息态大脑活动随时间的相关性(在M = 122个功能性定义区域之间进行了功能连接性评估,见图1)。根据已经确立的定量感觉测试(QST)协议28获得的热、冷和机械痛阈值被聚合成一个综合的痛敏感度得分,如之前所述8,以获得疼痛敏感度的一般估计(有关理由,请参见补充注释1)。研究1的全脑静息态功能连接性数据(N1 = 35,排除后)被用作输入特征空间(每位参与者P = 7503个特征)来预测个体的痛敏感度得分,从而形成了典型的大P—小N的设定。

图1. 从静息态fMRI测量中计算功能性脑连接性。

总共N=116名参与者的原始脑图像经历了自动化的人工影响去除,包括去峰值,滤除干扰回归,带通滤波和剔除运动污染的时间帧。这些程序对BOLD信号的影响在地毯图(a, x: 时间, y: 体素, 颜色: 强度)上有所体现。随后,进行了多阶段的高精度脑图谱个体化,以获取M=122个功能性定义的脑区的区域灰质信号(b)。计算所有可能的区域对之间的偏相关,以评估功能连接性,并基于大规模模块化进行排序,形成个体连接矩阵。所有区域与全局灰质信号的偏相关性被保留,以考虑但不完全丢弃全局信号的影响,这是常被视为混杂因素但也与例如警觉性相关的脑活动成分。

c 研究1的受试者水平连接矩阵(通过群体平均连接矩阵表示)作为基于机器学习的行为疼痛敏感性预测的输入。

根据这些条件,我们构建了一个机器学习流程,包括特征归一化、特征选择和拟合弹性网回归模型。模型训练包括拟合流程和在留一法交叉验证框架中优化其超参数,以提高对新数据的泛化能力。在研究1中,基于QST的疼痛敏感性值范围从-1.45到1.52,稳健范围(第5百分位和第95百分位之间的范围)为2.57(任意单位)。在内部验证(即,对留出参与者数据的表现)中,模型预测的疼痛敏感性的平均平方误差为MSE1 = 0.32(pMSE,1 < 0.0001,解释的方差Expl. Var.1 = 39%,皮尔森相关系数r1 = 0.63,pr,1 < 0.0001,图2b)。模型拟合的诊断(学习曲线分析,图2a)表明该方法减少了过拟合,样本大小足以达到可接受的泛化。最后,使用最优超参数的机器学习流程被拟合到研究1中所有参与者的数据,并保存以备后用。因此,研究1中训练的模型被称为静息态疼痛敏感性网络的签名(简称,RPN签名)。

学习曲线(a)表明,训练样本(研究1)的大小足以显著减少过拟合并改善泛化。在训练样本(研究1,N = 35,b)中的内部交叉验证预测和在测试样本(研究2和3,c,d,N = 37和19,分别)中的前瞻性外部验证,揭示了RPN签名的显著预测精度,稳健性和多中心泛化性。预测的平均绝对误差(MAE)由虚线表示。阴影带表示回归估计的95%置信区间,预测值与观察值的皮尔森相关系数(r)及其对应的排列基础p值。源数据提供为源数据文件。

如2018年3月7日预先注册,外部验证研究(研究2和3)在不同的成像中心、不同的MRI扫描仪(来自三个不同的供应商)以及不同的研究人员中进行。多中心设计以及成像序列中的合理变异引入了固有的异质性,确保测试样本具有最大的独立性并提供预测准确性和泛化性的现实估计。

在研究2和3(N2 = 37和N3 = 19,排除后)中,基于QST的疼痛敏感性值分别为-1.82到1.57和-1.2到0.55,稳健范围分别为2.3和1.43。外部验证(图2c,d)显示预测模型具有相当的泛化性:平均平方预测误差分别为MSE2 = 0.54和MSE3 = 0.17(pMSE,2 = 0.02,pMSE,3 = 0.03,Expl. Var.2 = 18%,Expl. Var.3 = 17%,皮尔森相关系数r2 = 0.43,r3 = 0.47,pr,2 = 0.004,pr,3 = 0.02)。疼痛敏感性、扫描仪内运动和人口统计数据的汇总统计数据见补充表1,CPT、HPT和MPT之间以及预测得分的相关性见补充说明1,补充图6。

为了确保RPN-signature捕获无痛静息状态下的疼痛相关神经处理,必须排除两种类型的混淆因素的潜在贡献:(i) 成像伪像(例如,头部运动伪像)和(ii)与个体疼痛敏感性相关的人口统计或行为变量(例如,已知年龄和性别与QST阈值略有相关性28)。

表1列出了研究中的(预注册的)混淆变量以及它们与预测疼痛敏感性得分的相关性(以及相应的p值)。由RPN-signature预测的疼痛敏感性得分与任何混淆变量都没有显著关联(所有变量的p > 0.05)。然而,对于性别(研究2:R2 = 0.08,p = 0.09)、从月经第一天开始的天数(研究1:R2 = 0.26,p = 0.11,研究2:R2 = 0.11,p = 0.17,研究3:R2 = 0.33,p = 0.08)、MRI和QST测量之间的时间差(研究2:R2 = 0.1,p = 0.06)以及疼痛处理区域中的谷氨酸/谷氨酰胺水平(在研究1中通过MR波谱学测量:R2 = 0.09,p = 0.08)的效应大小是相当大的。混淆变量的汇总统计数据在补充表1中报告。

表1 混淆因素分析:RPN签名反应特异性与疼痛敏感性相关。

没有发现任何混淆变量与其有显著关联(p < 0.05)。表格标题,R2 ≥ 0.09(根据Cohen的标准,这是中等效应大小)的效应大小和小于0.1的p值用粗体字表示。在研究1中,MRI和QST在同一天进行,否则会在1-5天内测量。通过MR波谱在疼痛矩阵区域测量了GABA和谷氨酸/谷氨酰胺的水平。这里报告的血压是在MRI测量当天测量的。关于额外的协变量(特质焦虑和QST测量当天的血压,所有的p > 0.1)请参见补充表3。源数据作为源数据文件提供。

FD代表帧间位移,% 删除代表被审查的时间帧数量,BP代表血压,mens. day代表从月经的第一天到MRI当天的天数,catas.代表灾难化,sensitiv.代表敏感性,CDT, WDT, MDT代表寒冷,温暖和机械检测阈值,T50代表引发中度疼痛的温度。

补充说明1确认了预测对于包含在综合评分中的疼痛阈值测量选择的相当大的鲁棒性(部分Q3),并且表明预测并未引入对研究的感官模式的任何偏见(部分Q4)。补充说明2表明,RPN-signature对潜在的分区相关问题(例如,易感性伪像,退出效应,噪声或次优分区)显示出显著的鲁棒性。

疼痛敏感性的预测性静息状态网络

通过应用的机器学习流程,非零的回归系数自然地描述了预测子网络。每个系数可以被解释为在预测中连通性的相对重要性。正(负)系数转化为更强的区域间功能连通性预测更高(更低)的疼痛敏感性。在研究1中训练的RPN-signature模型,保留了7503个功能连接总数中的21个非零连接。预测连接列在表2中,并且预测网络在图3b的和弦图上描绘。

表2 RPN签名的预测连接。

非零回归系数自然地描绘出预测子网络。区域和相应的大规模静息态网络(RSN)模块应按照MIST图谱(参见方法,给出了原始图谱索引)进行解释。预测连接按其绝对预测权重排序。与更高和更低的疼痛敏感性相关的连通性强度分别用红色和蓝色突出显示。有关基于自助法的95%置信区间和条件覆盖率的p值,请参见补充表4。

CER代表小脑,罗马数字代表小脑叶,GM代表灰质,VAN代表腹侧注意力网络,SN代表显著性网络,BG代表基底节,Thal代表丘脑,Hb代表红核,MLN代表中脑边缘网络,FPN代表前额顶叶网络,SMN代表感觉运动网络,DMN代表默认模式网络,VN代表视觉网络,Ins代表岛叶,PO代表顶叶盖,SII代表二次感觉皮质,STG代表上颞回,FEF代表前眼场,PrCG代表前中央回,PoCG代表后中央回,SMC代表额外运动皮质,Put代表豆状核,Caud代表尾状核,Acc代表伏隔核,LOG代表外侧眶前回,CF代表侧裂,OTG代表枕颞回,MFG代表中额回,IPS代表顶叶沟,pgACC代表围脑沟前扣带皮质,PrC代表前扣带皮质。L代表左,R代表右,a代表前,p代表后,v代表腹,d代表背,l代表侧,m代表中。

图3 静息态疼痛敏感性网络签名

a RPN签名的预测网络。带宽与功能连接的预测权重成比例。网络节点用颜色编码并以3D视图显示。请注意,所使用的大脑图谱基于完全数据驱动的功能分区,因此,不完全是双侧的。如果没有明确指定侧性(L:左,R:右),则图谱没有区分该区域及其对侧同源区域。

b RPN签名的区域预测强度图。颜色条表示区域预测强度(所有连接的权重之和乘以特定研究的区域概率图)。绝对预测强度大于0.1的区域已注明。

预测的疼痛敏感性分数的近半方差由四个最强的连接解释。最重要的正预测连接发现在:

(i) 后部豆状核(pPut)和包括顶叶盖和后部上颞回部分的区域(PO/pSTG)之间;(ii) 前极(FP)和小脑第五叶之间;以及(iii) 小脑右前状叶II和侧前中央回(lPrCG,初级运动皮质)之间。在前四个连接中唯一的负预测器是额外运动皮质和小脑第六叶后部之间的连接。还发现了其他一些区域间的连接和全局灰质信号也有助于预测疼痛敏感性。

为了简化参与RPN签名的区域的空间模式的概览,我们计算了节点的预测权重之和,并将其与特定研究的区域概率图相乘。结果的节点预测强度图显示在图3a上。

讨论

在这里,我们报告了RPN签名,这是一种基于疼痛自由静息状态期间获得的功能连接的疼痛敏感性的客观,基于大脑的测量方法。应用的预期验证程序为有前景的基础研究和转化应用奠定了坚实的基础。RPN签名将与固定的静息状态fMRI分析流程一起应用,并提供了基于静息状态fMRI的、非侵入性的疼痛敏感性特征的机会。

这项工作通过提供强有力的证据支持疼痛自由静息状态功能大脑连接与痛觉刺激的神经处理以及相应的疼痛体验的关联,填补了基础研究中的一个重要空白。所识别的功能网络模式为这种常被忽视的静息状态大脑活动成分提供了新的见解,并大大推进了我们对个体疼痛敏感性背后的神经机制的理解。我们采用了预先注册的多中心设计,并部署了大样本来对我们的预测模型进行严格的前瞻性验证。因此,RPN签名可能作为个体差异和疼痛敏感性变化的客观神经标记物。

重要的是要区分我们对无痛静息状态的研究与疼痛研究中的其他预测努力,如病人对照分类研究(但也包括疼痛解码),这些研究检查实验性或慢性疼痛条件下的大脑活动,即在疼痛体验存在的情况下。注意,在慢性疼痛的研究中,“静息状态”的术语通常指的是数据采集范式中没有明确的实验性疼痛刺激,而不是没有持续的自发疼痛体验。

相反,RPN签名基于在没有任何持续痛觉体验的情况下测量的大脑活动(我们称之为无痛静息状态)。因此,它为未来构建复合疼痛生物标记物的努力引入了一个概念上新的模态。

RPN签名预测了个体疼痛敏感性方差的相当一部分(内部验证为39%,外部验证为18-19%,见图2),根据科恩的建议,可以认为这在中到大的范围内。预测的均方误差(MSE)在外部验证研究中为0.54和0.17(内部验证为0.32)。与观察到的疼痛敏感度值的最小-最大范围(3.39)和四分位数范围(1.04)相比,解释误差的大小强烈建议RPN签名在慢性疼痛31的背景下具有临床相关的预测力,使RPN签名在许多应用中可部署。在这里,我们讨论评估所达到的预测性能的相关性的三个方面。

首先,我们报告的预测准确性与以前关于其他目标变量的静息状态fMRI研究中的类似(参见例如参考文献32,33,34,35)。然而,以前使用的大多数基于fMRI的预测模型只进行了内部验证(即,使用相同的数据集进行模型训练和验证),而我们的验证是基于在不同扫描站点独立获取的两个样本。

其次,我们的研究基于大样本(N=116),外部验证在方法论、基础设施、研究人员以及QST和MRI测量之间的1-5天延迟方面表现出更大的异质性(在训练数据集中,这些测量在同一天进行,详见补充表1)。因此,我们的研究克服了最近对基于神经影像学预测器的常见方法学陷阱的担忧。虽然严格标准化研究协议可能会使预测准确性估计更高,但上述报告的估计预计将强健地推广到更广泛的静息状态fMRI数据集。

第三,我们认为,仅依赖基于QST的预测准确性可能会低估RPN签名的实用性。虽然定量感觉测试是评估疼痛敏感性的金标准方法,但它是一种主观体验的测量,由周围、脊髓和脑上皮过程形成,并与知觉和行为误差组件卷积。另一方面,RPN签名只捕捉来自脑上皮的神经源信号。由于这种差异,基于多面的QST-based观察的预测准确性估计只应作为判断RPN签名作为衡量个体间疼痛敏感性的脑上皮神经成分的代理的下限。

被调查的影像学伪影以及观察到的人口统计或行为变量都与预测的疼痛敏感性值没有显著相关。总的来说,我们的分析强烈建议RPN签名的预测能力是基于(i)神经源信号,(ii)特异性疼痛敏感度,并且(iii)并非由一般感觉神经系统刺激的敏感性或与疼痛相关的心理变量如焦虑,抑郁或睡眠质量驱动。

众所周知,QST疼痛阈值在性别和月经周期的不同阶段有所不同。他们与预测疼痛敏感性得分的适度(但统计上不显著)相关性表明,RPN签名部分捕获了这些效应的神经相关性。与疼痛处理区域中谷氨酸/谷氨酰胺水平的弱相关性(R2=0.09,p=0.08)表明,RPN签名还捕获了先前报告的8个神经递质水平依赖性的个体疼痛敏感性。由RPN签名预测的疼痛敏感性得分似乎也与MRI和QST测量之间的延迟(天数)略有关联,这表明疼痛敏感性及其静息状态神经相关性在天的尺度上有动态变化。

由于热痛阈值(HPT),冷痛阈值(CPT)和机械痛阈值(MPT)是由部分不同的感觉通路介导的,因此评估由RPN签名预测的疼痛敏感性的复合得分如何与单个疼痛阈值(疼痛模式)相关是有趣的。观察到的适度内部一致性以及跨不同疼痛阈值的特定相关结构具有实验特定和神经生物学的解释(参见补充说明1以获取详细讨论)。此外,我们的补充说明1证实了先前的结果,表明疼痛处理的共享组成部分确实塑造了所有三种疼痛模式的疼痛阈值。

因为热痛阈(HPT)、冷痛阈(CPT)和机械痛阈(MPT)是通过部分不同的感觉通路介导的,评估由RPN签名预测的疼痛敏感性复合得分与单一疼痛阈值(疼痛模态)之间的关系是很有趣的。观察到的适度内部一致性以及不同疼痛阈值之间的特定相关结构具有实验特异性和神经生物学解释(详见补充说明1中的详细讨论)。此外,我们的补充说明1证实了先前的结果,表明共享的疼痛处理成分确实在所有三个研究疼痛模式的疼痛阈值中塑造了疼痛阈值。我们发现,这种与模态无关的成分同时被RPN得分和用作预测目标的复合疼痛敏感性得分捕获。正如从这些结果中预期的那样,RPN得分对构建复合得分的疼痛阈值测量的选择相对稳健,并且与单一阈值显著相关。最后,RPN得分不会引入针对任何涉及感觉模态的偏见,且对区域时间序列的质量具有稳健性(补充说明2)。这些特性使得RPN签名成为一个有前景的预测工具,用于简洁、非侵入性地描述个体对疼痛的敏感性。

我们确定的预测性连接网络相对稀疏(一个预测节点平均有1.2个链接),这可能是由于应用的机器学习流程中使用的L1正则化的结果。因此,我们的方法可能只捕获了冰山一角,所报道的预测签名应被视为底层真实连接模式的稀疏表示。由于特征选择程序中的固有变异性,可能存在其他等效的稀疏签名。然而,我们的外部验证程序确认了所报告模式的预测有效性,并允许对单个连接进行解释。

RPN签名的关键节点,如PO/SII,pPut(后部豆状核),SI,dlPFC,海马状核(Hb),pgACC和aIns(见图3),通常与疼痛相关,相应的网络被发现是预测个体疼痛阈值的最有预测性的。然而,其他经常与伤害感受和疼痛相关的大脑区域,如后侧岛叶,没有直接在预测模式中表示,这可能是稀疏建模的结果。此外,其他通常不与疼痛处理相关联的区域也对RPN签名有所贡献。

根据当前的概念,疼痛的多面体经验是由伤害感受和个体的认知情绪状态的整合产生的。在这样的框架下,我们的预测连接模式可能反映了疼痛相关区域与决定个体性格、认知、情绪和记忆体验的大脑属性的交互。

例如,PO(顶叶盖)的亚区(以及dpIns(dorsal posterior insula )已被讨论为特异性的伤害感受和疼痛相关知觉,而pPut(后部豆状核)在疼痛相关的情感感觉运动过程中的涉及是众所周知的。因此,我们观察到pPut和SII(二次感觉皮质)在静息状态下更强的共激活与更高的疼痛敏感性相关,可能暗示在疼痛敏感性高的个体中,这种整合过程中显著的(可能是伤害性的)输入的感觉方面具有更高的权重。

类似地,前额叶区域与SI和小脑的感觉运动部分(I-V叶)的静息状态连接对疼痛敏感性的预测力可能反映了前额叶皮层在将认知情绪状态整合到疼痛感知中的已知角色。符合这个观点,dlPFC的神经调节发现可以减少感觉-运动区域的疼痛相关活动,而前额叶皮层和躯体感觉皮层的静息状态同步性被报道能预测疼痛敏感性的变化和疼痛阈值的个体差异。

小脑与感觉运动皮质区域(PrCG,PoCG,SMC)之间静息状态同步性的预测能力也令人注目,突出了小脑作为相关研究的有前途的新目标。 几个对预测产生小到中等影响的连接涉及到枕叶。这些预测性连接中的一些可以被解释为疼痛感知的次要反应(类似于众所周知的在痛苦刺激期间视觉区域的停止活动),或者可能与视觉上下文对疼痛体验的影响的一些未被充分报道的效应有关。 总的来说,我们的发现与这样的观念相符,即没有任何一个大脑区域是选择性且专属地与疼痛敏感性相关,个体在疼痛敏感性方面的可变性最可能源于多个大脑区域的连接性,这些区域整合了个体的感觉、认知和情绪状态,从而决定了对疼痛的总体敏感性。 尽管只有少数几篇文章之前强调了静息状态活动与急性疼痛的关系,但许多研究都专注于疼痛预期,即直接在疼痛刺激前的无痛状态。总的来说,这些研究的结果表明,前岛皮质、中脑导水管周围灰质、前扣带、小脑和前顶网络区域的功能状态和连接性特征似乎反映了个体对潜在疼痛刺激的瞬时敏感性。然而,从这些研究中,我们尚不清楚疼痛敏感性是由性状类似的特征(如焦虑,疼痛灾难化)还是状态类似的特征(如前置的情绪评估,注意力或疼痛特异性的精神状态)调节的程度。与预期研究中使用的短时间段不同,我们的研究基于一个十分钟长的静息状态期,并预测几天后测量的疼痛敏感性。因此,我们的结果强烈支持疼痛敏感性的性状类似的神经标记的存在。然而,我们也观察到了与测量时间间隔和月经周期的关联,这为时间动态性提供了证据。 虽然所提出的预测性标记的验证和测试在可推广性方面非常可靠,但我们在这里注意到,所使用的大脑图谱,虽然提供了全脑覆盖和可推广的功能分区,仍然在脑区的侧性和精确定位上引入了先验约束(例如,它不包含PAG和其他脑干区域)。此外,尽管RPN标记与非疼痛的触觉检测阈值没有相关性,但我们应注意,我们并未研究视觉或听觉等其他感觉方式。 所识别的预测性网络标记从基础研究和临床角度有重要的意义,并为未来的转化研究铺平了道路。研究静息态疼痛敏感性网络如何嵌入到一般的静息态大脑活动中,可能扩展我们对静息大脑复杂功能结构的知识,并加深我们对疼痛主观体验如何从神经功能中产生的机制的理解。 虽然疼痛敏感性增强是许多疼痛病症的特征,但在实验性诱发的、急性和慢性疼痛中,大脑活动和连接性的模式是基本不同的。未来,涉及临床人群的迭代研究方法有望进一步提高RPN标记的预测能力和可推广性,甚至可能允许在无法获得可靠的行为性疼痛报告的情况下评估疼痛敏感性。 总的来说,我们在这里识别的RPN-signature有可能成为一个新的、非侵入性的神经标记,用于评估脊髓上神经对疼痛敏感性的贡献,这在临床疼痛状态中具有重要意义,尤其是在疼痛转化研究和镇痛治疗策略的开发中,往往对解耦周围和中心机制有至关重要的兴趣。此外,RPN-signature可能会作为一个新的、基于静息网络的构建模块,用于未来的疼痛生物标志物复合标记。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值