肿瘤放射组学中的深度学习以及可解释性和数据整合的挑战

文章讨论了深度学习在放射肿瘤学中的应用,特别是其在放射组学中的角色。通过提取和分析医学图像的特征,深度学习模型可以提高诊断和治疗的精确性。然而,这些模型的可解释性、数据集的大小和多中心数据的标准化是当前面临的挑战。文章还探讨了如何通过代理模型、特征可视化和重要性估计来提高模型的可解释性,并提出了数据策划和多中心协调的重要性,以克服图像和特征的变异性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在过去的十年里,人工智能(AI)领域经历了广泛的发展。现代放射肿瘤学基于对先进计算方法的利用,旨在实现个性化和高诊疗精准度。大量可用的影像数据和机器学习(ML)的增加,特别是深度学习(DL),引发了揭示来自解剖结构和功能医学图像的“隐藏”生物标志物和定量特征的研究。深度神经网络(DNN)在图像处理任务中取得了出色的性能,并得到了广泛的应用。最近,DNNs已经被用于放射组学,其可解释AI(XAI)的潜力可能有助于临床实践中的分类和预测。然而,大多数DNNs使用的数据集有限,缺乏普遍适用性。在本研究中,我们回顾了放射组学特征提取的基础知识,DNNs在图像分析中的应用,以及有助于实现可解释AI的主要解释性方法。此外,我们还讨论了多中心招募大型数据集的关键要求,增加生物标志物的可变性,以确定放射组学的潜在临床价值和健壮可解释AI模型的发展。本文发表在Physica Medica杂志。

本文要点:

• 人工智能在医学中的广泛发展和应用。

• 个性化和高诊疗精确度。

• 多中心大数据集招募的关键需求。

• 增加生物标志物的多样性,以确定放射组学的潜在临床价值。

• 稳健的可解释AI模型的发展。

关键词:深度学习、机器学习、卷积神经网络、放射组学、数据整理、可解释性、可理解性。

1.介绍

1.1. AI在肿瘤学中的应用

预计基于机器学习(ML)的人工智能(AI)将对医疗保健产生重大影响。由于依赖于大数据集训练的深度学习(DL)在众多应用中都展示出了最先进的性能,预计这个领域在信息和数据处理方面会发生大规模结构性变化。肿瘤学特别受到这些发展的影响,癌症是全球重大问题(2018年有1810万例和960万死亡,分别预计到2030年将有2200万和1300万)[1]。关于基于多模态医学影像(如 CT(计算机断层扫描)、PET/CT(正电子发射断层扫描/CT)或 MRI(磁共振成像))的预测建模,学术界和私营研究都依赖于 ML/DL 方法,然而它们在临床实施和接受度方面目前还不足。

几十年来,在医学肿瘤学中,患有癌症的患者进行了包括PET/CT/MRI在内的诊断影像采集,其中结合了解剖和功能信息,以提供疾病的预后和有效的治疗计划。先进的混合成像扫描仪的广泛使用增加了日常诊断数据的量,增加了对快速准确诊断的计算支持的需求[2]。随着计算机科学的发展,日常临床应用似乎越来越多地利用AI的快速发展。肿瘤学中的医学影像应用和影像引导放疗包括早期诊断、分期、治疗决策和计划、监测和患者随访[3]。基于能够识别未来治疗失败和复发风险的患者的预测模型,可以优化患者的管理。由于一些患者对标准护理的反应不完全,可以根据这些预测建立不同的治疗策略。此外,整合来自多个来源(临床、影像、剂量、遗传、毒性等)的数据以提高预测能力是至关重要的[4]。

除了在图像处理的不同阶段进行自动化外,ML/DL在临床肿瘤学中开启了一个新时代,它提供了更全面和快速的诊断数据特征提取,包括那些可能无法直接被肉眼(包括经过专门训练的眼睛)捕捉到的特征。通过对这些特征的量化分析,结合传统的解剖和功能特征,可以进一步描述肿瘤的特性,如侵袭性或对疗法的反应可能性,从而为临床决策提供信息[5],[6]。放射组学和生物标志物的选择与量化与先进的ML/DL算法密切相关,应在应用于临床实践之前进行仔细使用和广泛评估。在肿瘤学中应用AI的临床应用仍然存在几个限制和挑战,包括模型的可解释性和可理解性,特征提取的敏感性,量化特征选择的可重复性以及数据的标准化。

1.2. 使用肿瘤生物标志物和放射组学的 AI 方法

一方面,放射组学被引入作为从医学图像中高通量提取“工程化”(或“手工制作”)特征的方法[6]。它有可能提供肿瘤特性的定量标志,这些特性不能通过视觉感知[7],并且已经显示出在识别肿瘤亚型和预测结果[8]方面的有希望的结果,这些结果依赖于机器学习方法来利用放射组学特征与临床或其他变量结合,构建预测模型。大多数的放射组学研究都集中在肿瘤学应用上。另一方面,深度学习和特别是卷积神经网络(CNNs)在计算机视觉中的应用,已经在过滤、分割、分类和合成(图像到图像的转换)包括医学图像[9]方面取得了最先进的结果。对于这些应用,可用数据的数量(即,在分割、过滤、合成的情况下标记的像素/体素)通常足够训练深度网络。另一方面,尝试在放射组学中进行预测建模[10],[11],[12],其中标签是基于病人(即,每个3D图像体积一个标签,而不是每个像素/体素)的,与标准放射组学方法相比,并没有取得非常大的改进,显示在某些情况下相似但互补的预测能力(即,结合两种方法会得到更好的结果),鉴于比较小的可用训练样本数量(例如,放射组学研究中的数百名患者与ImageNet[13]中的数百万图像)。然而,当前的研究趋势明显是更多地依赖基于DL的技术,因为它们可能允许与传统工作流程相比更高级别的自动化,因此可能促进其临床转化。

1.3. 放射组学的可解释性

在研究放射组学特征提取及其与其他诊断生物标志物的最佳组合以供临床应用方面,有大量的研究和综述。然而,将这些程序应用到肿瘤学实践中以及其在临床日常中的可解释性方面存在明显的限制。大多数现有的研究缺乏可复制的具体结果,可适用于更大范围的应用和不同的数据 [14]。科学界面临着一个巨大的挑战,即将先进的数学模型与临床衍生生物标志物的众多变量结合起来的多参数模型进行翻译和有效使用 [15],[16]。在许多研究中,人们尝试将机器学习/深度学习(ML/DL)方法应用于临床日常应用。这些应用在第3.3节中有所描述。

特别是在深度学习的背景下,模型的决策过程对人类来说并不透明,因此解释性是一个关键问题,尤其是在像放射组学这样的潜在高风险领域。可解释模型的优点包括提高了对模型在面对未见过的数据时会按预期方式行动的信心,以及最终用户(如医生)对模型的更高信任和接受度。因此,解释性是需要解决的重要挑战,以促进深度学习模型的临床实施。

在本文中,我们以放射组学为工具,介绍了深度神经网络(DNNs)在肿瘤学应用方面的最新研究进展,重点关注关于影像生物标志物的可解释性和标准化的最新发展和未来展望。在第二部分,我们介绍了主要的放射组学分类及其定义,并简要地研究了从医学图像中提取放射组学特征的不同方法。在第三部分,我们将重点转向DNNs,首先解释神经网络、多层感知器(MLPs)和卷积神经网络(CNNs)的一般结构,这些在医学图像中被广泛使用。在第3.3节,我们介绍了DNNs在肿瘤学中的几个临床应用,突出了其优点以及可能的缺点。最后两部分涉及到DNNs临床应用的两个主要挑战,即模型可解释性和多中心标准化。在第4节中,我们通过三种主要的解释性方法引入了可解释人工智能(XAI)的主题。最后,在第5节中,我们介绍了处理影像数据以用于AI模型的方法,这些方法解决了与数据管理、医疗保密、多中心标准化、扩大数据集和模型泛化相关的问题。

2. 放射组学分类

2.1. 基于特征的放射组学

常规的放射组学方法通常被称为基于特征的放射组学,这些特征是从医学图像中自动或半自动提取出来的。其中一些特征旨在最大限度地利用现有的诊断性临床数据,通过揭示那些难以或无法用肉眼观察到的“隐藏”特征,供临床使用。

提取放射组学特征的标准方法需要在应用的图像中定义感兴趣的体积或区域(VOIs/ROIs)。有一些最近的研究表明,当使用混合成像数据(PET/MRI,PET/CT)时,得到的信息质量优于单独使用每一种模式 [17],[18]。为了使放射组学的再现性和解释性得到提高,在计算手工特征本身之前,需要对数据进行明确定义的处理。这些过程在第4节中有详细描述。在放射组学研究中通常会考虑大量的基于数学模型的特征(甚至超过1000个),它们可以被归类到4个主要的组别 [2]:

1.形状特征 [19]:为感兴趣区域(ROIs/VOIs)的几何性质提供定量描述,例如表面积,总体积,直径,球度或表面积-体积比。

2.一阶统计特征(基于直方图的特征):描述所选区域体素的分数体积和体素强度的分布,例如最小值,最大值,平均值,方差,偏度或峰度。

3.二阶统计特征(纹理特征):这些特征是基于从3D图像中相邻体素的强度关系派生的矩阵提取出来的,例如:

a. 灰度共生矩阵 (GLCM):描述3D图像内灰度强度的空间分布 [21]。

b. 灰度运行长度矩阵 (GLRLM):定义为具有相同灰度值的连续体素的数量,它描述了任何方向上不同灰度强度的灰度运行长度 [22]。

c. 灰度大小区域矩阵 (GLSZM):量化3D图像中的灰度区域,即具有相同灰度强度的相连体素的数量 [23]。

d. 邻域灰度差异矩阵 (NGTMD):量化灰度值与其在距离δ内的邻域的平均灰度值的差异 [24]。

e. 灰度依赖矩阵 (GLDM):量化在距离δ内与中心体素相关的连续体素的数量 [25]。

二阶特征包括熵,均匀性,对比度,同质性,不相似性和相关性。

4.高阶统计特征:这些特征是通过在图像上应用滤波器或数学转换后通过统计方法获得的,以突出重复模式、边缘、直方图导向的梯度或分割的局部二进制模式。这些包括分形分析、闵可夫斯基函数、小波和傅立叶变换,以及对高斯滤波图像的拉普拉斯变换,这些可以提取出越来越粗糙的纹理模式区域 [26]。

2.2. 深度学习放射组学(DLR)特征

深度学习放射组学(DLR)特征是通过对深度神经网络,尤其是用于图像分割的卷积神经网络(CNNs)的信息进行标准化获得的。这里的主要假设是,一旦图像已经被深度神经网络(DNN)准确地分割,关于分割区域的信息就已经存储在网络中 [27]。

图像处理深度神经网络的第一层,其架构在 3.1 神经网络和多层感知器(MLP),3.2 卷积神经网络(CNN)中详细描述,通常在相对精细的空间分辨率下实现非线性模板匹配,提取数据的基本特征,从而检测出如线条和边缘等基本模式。随后的层学习识别前一特征的特定空间组合,以层次化方式生成模式的模式 [28]。深度神经网络的较高层常常能产生更高级的特征,当深度神经网络的输入是医学图像时,这些特征可能与手工制作的放射组学特征相似。这些基于深度学习的放射组学特征可以从网络的最后几层中提取出来。这样,深度神经网络可以用来将3D图像转换成1D向量,以便通过深度学习,即端到端的方式,或传统的机器学习方法进行医学图像处理。

深度学习放射组学特征的有效性与分割质量和训练数据集的体积高度相关 [29]。因此,与基于特征的放射组学相比,需要大量的数据集才能识别出相关和稳健的特征子集。深度学习放射组学的另一个限制是特征和输入数据之间的高度相关性,因为DLR(深度学习放射组学)特征是从那些非常具体的数据中生成的,没有应用先验知识 [2]。

3.1. 神经网络和多层感知器 (MLP)

为了进行分类和预测临床结果,监督学习算法在解释变量(例如,输入特征)和响应变量(例如,输出标签)上进行训练。在放射影像学中,分类任务包括诊断或预测对治疗的反应(例如,良性与恶性病变,化疗放疗的反应者与非反应者),而回归任务包括预测时间至事件(例如,无疾病生存时间)。

通常,深度学习模型由连接的神经元层构成(图1),其中单个神经元通过简单的激活函数定义。通过组合大量的节点和层,深度学习可以在输入特征和输出标签之间学习复杂和非线性的函数,在各种计算机视觉问题中实现高性能 [30],[31]。在一个多层感知器中,输入特征(如医学图像)针对输出标签进行训练,同时调整参数以最大化预测精度(图1)。

图1. 多层感知器的架构

每一层都与前一层和后一层完全连接,而在每一层内部,神经元之间没有连接。索引i表示输入特征x ,而索引j,k表示每一层中的神经元,其中x 是输入特征, w是权重, z是输入的加权和, y是激活。 网络通过一个称为正向传播的过程将输入转化为输出,这个过程包括在每一层中对输入进行加权求和(得到z),并应用一个激活函数(f),通常是逻辑函数或者修正线性单元(ReLU)。这种架构的目的是找到输入特征的一个(非线性)组合,使得考虑的类别变得线性可分[32]。 隐藏层本质上执行的是自动化特征工程,它找到输入特征的有信息量的组合。在传统的放射组学中,寻找适合的输入特征组合的过程需要手动执行,这被称为特征工程。手工制作的特征使用专家知识得出,其中一些可能对癌症的信息量非常高,而其他的可能无关。因此,需要一个繁琐的特征评估和选择过程,才能获得准确的模型。引入一个隐藏层,或在深度架构的情况下引入多个隐藏层,通过使用反向传播[33]过程中将标签数据输入网络并更新参数(权重和偏差)的迭代过程,自动化了这个过程。因此,网络直接从数据中学习哪些特征对手头的任务是相关的。

在实践中,通常使用随机梯度下降[34]来更新权重,该方法使用从训练数据集中随机选择的子集获得的估计值。权重的更新重复多次,直到损失函数不再减小且模型已经收敛。

在从训练中保留出来的测试数据集上评估训练模型的性能。如果模型在测试数据集上的性能明显低于在训练数据集上的性能,可能暗示过拟合,即模型在训练过程中调整到了不重要的特性,并且在这个特定训练数据集之外泛化得不好。虽然我们可能试图在传统的过拟合情境中减少模型的复杂性,但深度学习利用了过参数化机制[35]。在过参数化的深度学习模型中,可以通过数据增强[36]和权重正则化[37],[38]来对抗过拟合。此外,可以使用交叉验证来从考虑中的多个模型中选择性能最好的模型[39]。

3.2. 卷积神经网络 (CNN)

多层感知机不适合对图像数据进行分类。首先,表示图像的数组必须被压平为一个一维输入向量,从而去除空间结构。其次,MLP并不具有平移不变性,因此输入图像的位移会使训练的分类任务失败。卷积神经网络(CNN)[40],[41]克服了这些挑战,接受并对图像或对象的位移保持稳健(见图2)。

图2. 典型的CNN架构。

在第一阶段,使用卷积和池化层执行特征提取,通常有多个这样的层相互连接,使网络“深化”。第二阶段由一个多层感知机组成,该感知机使用提取的特征进行类别预测。

一个典型的CNN通常由(a)执行特征提取的卷积层组成,这些卷积层连接到(b)标签为响应变量的多层感知器。卷积层按特征图组织,其单元通过称为内核或滤波器的小型权重数组与前一层的局部块相关联。每个单元的值是通过使用内核计算前一层激活的加权和并应用激活函数来获得的。获取特征图的过程称为内核和前一层的离散卷积,因此得名。简化形式,可以写成:

. 其中,f是激活函数,w是内核,

是前一层的特征图,b是偏差。直观地讲,卷积可以理解为用内核扫描图像,并在特征图中存储内核的每个位置的结果。每个特征图内的权重是共享的,这导致了平移不变性和参数的减少。

典型的带有卷积神经网络(CNN)的深度学习模型通常学习特征的层次结构,其中高级特征由低级特征组成。举例来说,第一层可能会学习边缘,然后这些边缘被组合成形状和部分,这些形状和部分组成了要分类的对象。这种特征的组合解释了为什么通过池化[42]或更大的步长[43]对图像或特征图进行降采样是至关重要的,因为这样在更深层的内核中可以“看到”原始图像的更大部分。网络的训练可以像训练MLP那样进行,即通过反向传播损失来更新权重。

CNN在计算机视觉方面取得了巨大的成功,擅长分类[31],[44],物体检测[45],[46]和分割[47],[48]。它们也被用于其他领域,如语音识别[49]和自然语言处理[50]。

3.3. 深度学习在医学影像学的应用

近年来,深度学习技术在医学图像分析中的应用有所增长(详见[9],[51]中的深度评论)。在许多情况下,所提出的模型的表现与医疗保健专业人员一样好,甚至超过了医疗保健专业人员,例如在疾病分类[52]上。在这里,我们按照他们执行的任务(即分类、检测、分割和配准)对选定的应用进行评论。表1总结了几种包含执行技术的应用。

表1. 使用DNN/CNN进行分类、分割、检测和配准的典型技术和相应临床应用的概述。

3.3.1 分类

医学图像的分类问题可以被划分为两个子问题[9]:图像/检查分类和对象/病变分类。图像分类将整个图像视为一个整体以预测诊断输出,例如某种疾病的存在。另一方面,对象分类关注的是预定义图像块的分类,例如判断一个结节是良性的还是恶性的。

在图像分类中,特别是在医学影像中,迁移学习是一种非常流行的方法,因为对于给定的任务,可用的图像数量相对较少。迁移学习使用之前在不同数据集上训练过的分类器的卷积层作为特征提取器,这对于小数据集特别有用,因为它可以提高精度。这种方法已成功应用于例如皮肤癌[53]和糖尿病视网膜病变[54]的分类,其准确性与人类专家相当。

对象分类更复杂,因为它需要关于对象位置的全局信息以及关于对象本身的局部信息。因此,预训练的网络不能如此轻易地被利用,所以所谓的多流架构是一种流行的方法。在[55]中,几个CNN在不同尺度的结节块上进行训练,提取的特征被合并并送入MLP,而[56]使用了类似的方法,但考虑了多个分辨率而非尺度。

3.3.2. 检测

在计算机视觉中,对象检测的目标是在图像中定位和识别预定义类别数量的实例,通常通过矩形边界框来指示对象的位置。具体来说,在医学图像分析中,我们通常区分定位解剖结构和检测对象及病变的任务。

大多数识别3D图像中解剖结构的方法都将问题转化为2D分类问题。基本的思想是首先在3D体积的正交切片上训练一个CNN,来分类某个结构的存在,并随后通过计算预测到含有该结构的切片的交集来获取它的定位。这种方法已成功应用于自动定位股骨远端的标志物[57],以及心脏、主动脉弓和降主动脉[58]。

为了进行对象或病变检测,许多作者进行像素级分类,这通常通过滑动窗口技术[59]实现。直观来看,这个方法的思想是在小图像块上训练分类器,并通过分类像素周围的块来获取像素级预测。由于卷积也由滑动窗口(内核)组成,所以这种方法可以非常高效地将分类器转化为全卷积网络[59]来进行CNN。这项技术的两个选定应用是在组织病理诊断[60]和冠状动脉钙化评分[61]中。在最近的一项研究中,应用并评估了3D卷积神经网络(DeepMedic),既可以检测也可以在MRI数据上分割脑转移病灶[62]。相应地,E. Grovik等人[63]使用基于全卷积神经网络的深度学习方法,展示了在多序列MRI数据上自动检测和分割脑转移病灶。

3.3.3. 分割

医学图像分割的目的是找到感兴趣的结构,如肿瘤和病变,并用相同的标签标记组成像素。深度学习技术在这个任务中已经证明是非常有效的,事实上,分割是最常使用CNNs来解决的问题[9]。

用于医学图像分割的最知名的CNN架构是U-net [64],它使用上采样卷积层获取与输入相同分辨率的分割映射。这种架构允许使用整个图像端到端训练模型,从而使模型能够利用图像的全部上下文。U-net有几个变种,最值得注意的是允许处理3D图像的变种[65],[66]。病变的分割需要结合对象检测和分割的模型,并已在[67]中成功实现。

M. Soltaninejad等人[68]研究了一种基于有监督学习的多模态MRI脑肿瘤分割技术,该技术使用来自少量临床数据集的超体素的纹理特征,得出的结论是增加数据的数量可以提高分割过程的准确性。此外,W. Deng等人[69]开发了一种融合全卷积神经网络和密集微块差异特征的脑肿瘤分割方法,并将其结果与传统的MRI脑肿瘤分割技术进行了比较。该研究使用了BRATS 2015(脑肿瘤图像分割基准),并且算法的训练是基于100个MRI脑肿瘤数据的患者。另一项最近的研究使用BRATS评估了在胶质瘤脑数据中检测肿瘤区域的性能。特征提取应用,并用于训练应用自适应神经模糊推理系统(ANFIS)方法对脑图像进行健康或异常 - 胶质瘤 - 脑图像的分类[70]。最近,DNNs被应用于脑转移病灶的自动分割。一个包含约500个影像数据的数据集被用于评估该方法,其敏感性和特异性根据病灶的大小而变化。

3.3.4. 配准

医学图像配准试图通过找到合适的坐标变换来对齐图像,从而最大化某种相似度度量。Simonowsky等人[71]使用CNNs为来自不同模态的两个图像片段构造了这样的相似性度量。使用这种度量,他们还能够推导出优化的变换参数来空间对齐这些片段。为了执行3D模型到2D X射线的配准,Miao等人[72]使用CNNs直接学习变换,通过手动调整变换参数获取人工样本来训练网络。DL方法正在广泛地被用于研究肺部放射治疗应用。例如,M. Foote等人[73]设计了一个特定于病人的运动子空间和一个DNN,以恢复解剖位置,以定义肺部的2D-3D变形。此外,最近的一项研究探讨了为自适应强度调制质子疗法(IMPT)的前列腺癌应用开发和验证一个强大且准确的配准流水线,以实现自动化勾画[74]。利用DNNs的医学图像配准应用众多[75]。

3.3.5. 放射组学

放射组学社区已经开始依赖DL技术,以解决常规放射组学工作流程中的一些挑战和限制[76],[77]。这包括自动化的检测和分割步骤,以及通过合成生成方法(参见第5.3节)来实现图像的一致化。一些研究也探索了通过提取特征(然后通过标准的机器学习技术进行组合)或作为端到端工具直到预测任务,依赖一个或多个深度网络来实现预测[12],[27],[78],[79],[80],[81],[82]。事实上,对一个有限大小的数据集从头开始训练深度网络往往效率较低。人们因此可以从使用预训练网络的图像中提取"深度特征"。这些在不同尺度、不同层次上的"粗糙"到"细致"的特征可以直接被利用,也可以与其他手工制作的放射组学特征组合,以构建更精确的模型[10],[83],[84],[85],如下面表2中列出的一些研究所示。

表2. 一些比较和结合标准放射组学方法和深度学习方法(主要是使用预训练网络提取"深度"特征)的研究示例。

然而,在放射组学中依赖深度学习方法也需要应对新的挑战和面对几个问题。这些包括由于可用数据集的规模有限且异质性高,特别是从零开始训练网络时,需要适当的训练、数据增强技术、约束和先验知识。一些研究表明,即使没有非常大的数据集来训练网络,也取得了一些成功,如下表3所列。

表3. 显示使用CNN相比标准放射组学只有边际改进的研究示例,实施不同的策略(例如,数据增强)以补偿常见DNN的缺点(例如,用于训练的数据大小有限,缺乏可解释性)。

另一个尚未在最近的研究中得到充分解决的问题是,通过使用深度网络构建的模型缺乏可解释性(参见第4节)。


4.可解释人工智能(XAI) 端到端深度神经网络的高性能以高复杂性和大量参数为代价。我们可能无法理解并解释为什么深度学习模型在图像分析中做出了某些分类。这种类型的算法通常被称为“黑箱”,我们无法理解其内部的决策过程。最终的输出(例如,分类或统计数据)被接受而无需辩护。 从改进放射组学模型的可解释性中可以获得几个好处,特别是如果它们依赖于深度学习方法。首先,专家可以更好地理解他们开发的模型如何从数据中学习,这可以让他们改进模型,特别是在理解它们在新数据中可能失败的原因方面。其次,非专业人士,特别是最终用户如医生,可以更好地了解他们依赖于为病人管理做决策的工具的内部运作,这将增加他们对这些工具的信心。反过来,如果医生能向病人解释为什么他信任这个工具,病人对这些工具的信心也会增加。 尽管原则上我们可以跟踪每一个处理步骤,但是大量的参数 —— 例如,流行的VGG-16模型有1.38亿个参数[86] —— 使得以这种方式推断模型行为的有意义解释变得不可行。解释性和可解释性研究旨在开发揭示给定模型行为的方法,或者构建对人类更易于理解的模型。 XAI(可解释的人工智能)的概念极其多样,从人机交互到可视化,再到可解释性指标[87]。对于算法如何解释,或者如何评估可解释性,这些都是研究的活跃领域,并超出了本文的范围。相反,我们关注的是帮助我们理解深度学习模型在医学影像上应用背后的原理的可视化和统计方法。理解模型如何准确地得出预测对于确保算法的公平性,识别训练数据集中可能存在的偏见,并建立其在新数据上预期运行的信任非常重要[88]。特别是在像放射学这样的敏感领域,解释性因此成为广泛接受的关键标准。我们将其归纳为三个类别:

4.1. 代理模型与模型压缩

更简单和更小的模型既更易于理解,也更有效率。因此,我们可以使用更传统的统计模型来解释深度学习的运行特性。解释深度神经网络的一个主要挑战通常是由于输入特征的处理和融入到后续层的非线性方式引起的。因此,一旦深度神经网络被训练并展示出高性能,我们可以将它们提炼为更常规的模型[89]。局部可解释的模型不可知解释(LIME)旨在通过在某个预测附近拟合一个局部线性模型来解释一个复杂的非线性模型[90]。

除了仅用于解释的简化代理模型之外,模型压缩旨在在极大地减少参数和复杂性的同时,捕获全方位(例如,局部和全局)的准确性[91]。特别地,Ba和Caruana[92]证明了一个浅层前馈网络可以学习之前由深度模型学习到的复杂函数,同时保持准确性。Hinton和Frost[93]设计了一种将深度学习模型蒸馏成软决策树的方法。特别是,他们提出使用从训练过的深度学习模型得到的预测标签,而不是有限数量的真实标签,并引入自适应惩罚进行正则化。他们能够构建相对紧凑的决策树,预测准确性略有下降。这样的软决策树可以更好地表示人类可以解释的决策层次结构。

4.2. 中间特征的可视化

卷积神经网络使计算机视觉中的深度学习表现出高性能。对于放射学,卷积层可以被视为在训练过程中最大化预测准确性的自动化特征工程。因此,确定卷积层实际学习了哪些特征非常重要。为此,Olah等人[94]提出在输入空间中对单个单元在特征映射中的激活或整个特征映射的激活进行梯度上升。具体来说,从纯噪声作为输入开始,并在优化过程中迭代地改变其在梯度方向上的值。这导致输入图像最大化激活某些单元或整个特征映射,因此可视化了网络对什么样的模式敏感。

反卷积[95],[96]是卷积的反函数,采取了不同的路径来可视化卷积层中学习到的特征。本质上,一旦模型被训练,我们将一个输出类设置为一,其他类设置为零,并通过网络反向传播到输入空间。这种反向查询将给定输出类的激活映射回输入,得到的图像可以被理解为网络对输出类的内部表示[95],[96]。除了从输出类开始,也可以任意从任何中间层的激活开始。得到的图像可视化了这一层表示和敏感的形状或模式。

4.3. 重要性估计器和相关性评分

输入特征,如医学图像中的像素或体素值,最终决定了分类。因此,估计输入像素对模型进行的分类的相对重要性,即估计哪些输入像素对特定预测最相关,这是非常重要的。由于重要性估计器可以在与输入相同的维度中可视化,因此它们通常被称为显著性地图。获取这样一个显著性地图有两种主要方法。首先,扰动方法通过测量当图像的小部分被置换、模糊或一般扰动时,预测准确性的降低[97],[98],[99]。

其次,梯度方法计算类得分相对于输入像素的梯度,其中类得分是输出向量中与感兴趣类相对应的神经元的激活[100],[101]。存在通过链式法则计算梯度的标准方法的修改。SmoothGrad[102]向输入图像引入不可察觉的噪声,这可能导致更稳健的重要性估计器。在引导反向传播[43]中,负梯度被设定为0,有效地丢弃了神经元激活的抑制。整流梯度[103]通过引入额外的超参数实现了这一点,允许按层进行阈值化。Grad-CAM[104]计算类得分相对于卷积层中的通道,即特征映射,而不是输入像素的梯度。因此,而不是输入像素的重要性,而是中间层学习的高级特征的重要性被量化。得到的粗糙显著性地图可以放大到输入尺寸,并与前述像素级精细粒度显著性地图结合,得到高分辨率和类判别的重要性估计器。图3描绘了一个肿瘤的临床例子和梯度类激活图(Grad-CAM)[12]。

图3. 每一行代表头颈癌患者是否发展出远处转移。

  1. 导入模型的原始图像,

b) 倒数第二个卷积块的梯度类激活图(Grad-CAM),

c) 列a和b的合并图像。红色代表对指定分类更重要的区域(摘自Diamant等人的研究[12])。(关于这个图例中颜色的解释,读者可以参考本文的网络版本。)

由于缺乏基础真实数据和几种相关方法,使用重要性估计器时必须小心。特别是,许多提出的重要性估计器主要是出于视觉吸引力的动机,如高对比度和降噪。许多这些去噪的显著性地图可能会导致强烈的偏见,这些偏见并不符合底层深度学习模型的真实可解释性[105],[106]。在掩盖重要像素时预测准确性的降低已经被用来评估显著性地图[107]。然而,有人指出,观察到的降级可能不仅仅是由于移除重要像素,而且与自然输入图像的分布偏差相互交织[108]。

总的来说,这三大类解释性方法在深度学习模型的应用中被广泛使用,尽管它们尚未被广泛利用来帮助解释基于深度学习的放射学模型。从简化复杂模型到可视化对预测重要的特征,我们应该检查和审查模型,以更好地理解操作特性。可解释性人工智能的进一步发展很可能有助于促进基于深度学习的放射学的临床转化。

5.影像数据处理

5.1. 数据策划

今天的典型病人医疗记录可能包含大量信息,来源于标准血液检测,更先进的影像学研究,即计算机断层扫描等,以及各种组学测试。自1970年代计算机断层扫描的出现以来,医疗图像数据的数量在医疗行业中一直在稳步增长。1970年代的典型CT包含大约40个5毫米的切片,而今天的CT可能包含超过2千个512×512的切片。同样,病人被开的各种检查在信息量、复杂性上也有所增加,它们来自各种医疗参考中心,并需要遵守医院和国家或国际医疗系统的各种指南和指令。

尽管小数据集可能足以用于训练AI算法,但是在临床设置中,需要大型、精心策划的带有关联注释的数据集,用于AI算法[109]。为此,准备和组织来自各种来源的数据在其生命周期中,使其可用于研究和/或教育目的,这是基础,称为数据策划[110]。数据策划包括伦理审批、去标识化、适当的标签和预处理,以及特定的数据集类型等几个步骤。

美国健康保险可携带性和责任法案(HIPAA)和欧盟一般数据保护条例(GDPR)要求对患者数据进行去标识化。去标识化是删除患者特定敏感信息的过程,如姓名、地址、联系信息,仅举几例[111]。这种类型的识别信息存在于各种数据中,如DICOM医疗图像。有几个工具包可以删除这些敏感信息,如Conquest DICOM软件[112]、RSNA临床试验处理器(CTP)[113]、K-Pacs [114]、DICOM库[115]、DICOMworks [116]、PixelMed DICOMCleaner [117]、DVTK DICOM匿名器[118]、YAKAMI DICOM工具[119]等。此外,它们可以选择将数据转换为不同的文件格式,如NIfTI(神经影像信息技术倡议)[120],这样DICOM元数据敏感信息就会被删除,只留下图像体素大小和患者位置供AI算法使用。

目前开发的AI实例通常基于监督学习方法[121]。为此,需要将(代理的)基准真值,通常是已经确立的诊断(例如,基于活检)或已知结果(治疗后确定的对治疗的反应,随访登记的事件,如复发或死亡),与患者的图像相链接。经过这个被称为标记的过程后,AI算法可以在数据集上进行训练和测试。尽管监督学习在AI领域占主导地位,但是当所有或大部分待分类/聚类的数据不能使用基准真值进行标记时,可以使用无监督和半监督学习。

另一个问题是,数据集类型可能来自不同的制造商、供应商、机构、国家(因此是不同的人群)。如果AI算法是用特定机构的数据,在特定供应商的机器上,针对特定人群进行训练的,那么算法的性能可能会过度拟合这些数据,而不能很好地泛化到其他类型的数据。AI算法应该在其他情况下对泛化进行彻底评估,因为在这些情况下,它可能无法高效工作,甚至完全失败。所以,用于训练AI算法的信息必须来自各种来源,或者如果算法将在特定目标人群上部署,那么信息应该来自特定来源[122]。

5.2. 多中心协调

由于之前发表的大部分放射组学研究都是使用小型、回顾性和单中心的患者队列进行的,因此与临床标准变量或简单指标(如PET中的代谢体积和基础SUV最大值、峰值或平均测量值)相比,放射组学的潜在增值或补充价值的证据级别被认为相当弱[123],[124]。此外,开发的模型很少在外部数据集上进行测试,更少在多个数据集上进行测试[125],[126]。因此,该领域迫切需要从对这种小数据集的分析转向对更大数据集的分析,以确定放射组学的潜在临床价值。随着这种需求,需要多中心招募以达到更大的数量。多中心研究的另一个优点是数据的固有变异性,这可以使队列更具代表性,从而导致模型推断更稳健[127],[128]。

然而,从多个中心收集数据在法律、伦理、行政和技术上都是复杂的,尽管像分布式学习(在机器学习社区也被称为联邦学习)这样的方法可以缓解一些问题,它包括数据不离开中心(只交换模型的参数/权重)[129]。尽管如此,无论放射组学特征是从每个中心本地存储的图像中提取的,还是从收集并存储在中央数据库中的图像中提取的,都需要考虑另一个主要问题。事实上,已经证明,大多数放射组学特征对于多种因素的变化,包括扫描仪制造商、型号和模型的变化,采集协议和重建设置的变化,都高度敏感[130],[131],[132]。

在某些情况下,从视觉角度看,对图像特性产生相对较小影响的因素,仍然可能对一些手工制作的放射组学特征值和分布产生非常重要的影响(有些特征对这些影响的稳健性低于其他特征)。因此,将这些特征汇集在一起进行任何统计分析和建立模型可能会导致不可靠的结果,要么隐藏现有的相关性,要么相反,创造出错误的相关关系发现[131],[133]。尽管尚未进行广泛的研究,但将具有不同特性和属性的PET/CT图像作为CNN的输入,可能也会使网络的训练更加复杂,或者需要比同质化数据集更多的数据。另一方面,深度学习模型也可以从异质数据中受益,因为它可能导致模型能够更好地推广到未见过的数据。因此,要了解协调在深度学习背景下的影响,需要进行进一步的调查。

扫描仪制造商和型号代的这种变化,采集协议以及重构算法和设置的变化,目前是临床实践的现实,而且在近期内可能会保持这种状态。此外,必须强调的是,这种变化也可能在单个中心内存在。例如,当PET/CT扫描仪被同一制造商的新型号替代,或者被另一个制造商的不同型号替代时,替换前后的图像很可能会有不同的特性,提取的特征也会随之变化。同样,如果该中心有多台扫描仪,队列中的病人在制造商/型号/采集/重构方面也可能存在差异。最后,不同的放射科医生/核医学医生可能会以不同的方式使用给定的扫描仪(例如,倾向于使用不同的重构算法或设置)。因此,在使用不同扫描仪采集的图像之间的差异可能比两个依赖于完全相同的型号和相关采集协议以及重构设置的中心之间的差异要大。因此,在单个中心环境下,图像和/或放射性特征缺乏标准化程序也是一个潜在的限制。

这有两个重要的含义:一是,当共享放射学研究的图像数据时,应谨慎地进行匿名化,确保DICOM文件中保留了与标准化目的相关的信息,例如关于扫描仪制造商和型号的元数据、采集协议(注入剂量等)以及重构的技术设置(例如算法,实施的修正,参数等);二是,进行依赖于提取手工特征或使用深度神经网络进行特征提取的放射学分析时,应仔细检查DICOM文件中的元数据,以确保适当的数据策划和提取所有关于图像采集和重构的先验知识,以便识别潜在的偏见和变异来源。

因此,考虑到这些变异性来源对于任何放射学研究的一致性和稳健性至关重要,尤其是当考虑到多中心数据时。有许多不同的方法可以解决这个问题,可以分为两组:在图像领域解决问题的方法(即在提取特征(无论是手工特征还是直接从图像中通过卷积神经网络学习特征)之前)或在特征领域解决问题的方法(即在特征提取步骤中或之后)。一方面,从图像领域解决问题包括直接标准化图像,使它们具有相同(或更接近)的属性(分辨率、噪声、纹理等)。另一方面,从特征领域解决问题包括标准化特征值,可以通过修改它们的计算方式(使它们对图像中的变化因素的依赖性较小)或直接修改它们的分布,使得它们可以在统计分析中被汇总。虽然这两种方法可以结合起来,但这还没有被广泛研究。下面讨论的大多数研究主要关注其中的一个方面或另一个方面。

5.3. 调和图像领域

5.3.1. 影像程序的标准化

减少图像属性变异性的一种方法是根据特定标准对采集和重建协议进行标准化,以实现更相似的图像。在PET/CT中,已经专门开发了指南来实现不同扫描仪之间更接近的恢复系数和SUV测量[134],[135],[136]。实际上,这些现有的标准化指南主要集中在定性和基本定量测量,没有专门包括作为实现标准化目标的放射影像特征值和分布。虽然这些长期的标准化努力需要巩固,甚至可能扩展以更好地考虑放射学,但它们在减少不同站点的放射影像特征分布的变化方面的能力,可能仍然不足以弥补现有(并在此停留)的扫描仪型号和制造商专有重建算法及各临床中心的后处理工具的多样性。一项最近的研究评估了现有的PET/CT成像标准化指南(即EARL(European Association of Nuclear Medicine (EANM) Research Ltd. [135])在减少不同扫描仪模型和重建设置之间的放射影像特征变异性方面的性能[137]。从PET图像中提取的特征与那些从EARL符合要求的重建中提取的特征之间存在重要差异。即使在标准化影像程序(采集协议、重建设置)之后,大量的放射影像特征仍然表现出显著差异。这种方法只适用于前瞻性收集的图像,在这些图像中允许修改采集参数。然而,大多数放射学研究都是回顾性的[138]。因此,它们是通过收集已经采集和重建的图像来进行的。评估不同重建的影响,需要存储原始数据,这在日常实践中很少做到[139]。对于回顾性收集的图像,需要一种可以在已经重建的图像上工作的方法。

5.3.2. 图像处理

一种方法是在手工特征提取或通过卷积神经网络进行分析之前应用图像处理技术。这种预处理的一个常见且受欢迎的例子是将所有考虑的图像插值到一个公共的体素大小,并应用过滤技术,使它们具有相似的分辨率和噪声特性。这并不是微不足道的实现,因为存在几十种图像插值和过滤的算法,所以找出最有效的组合可能相当具有挑战性和耗时。然而,由于IBSI(图像生物标记物标准化倡议)指南在手工纹理特征计算的特定背景下推荐各向同性的体素[16],因此在最近的放射影像学研究中,插值到一个公共的各向同性体素大小通常作为默认的预处理步骤进行,所以如果考虑到具有可变重建矩阵大小的图像,这也可能是有益的,尽管选择公共大小参数可能比较棘手。CNN也通常需要输入网络的图像大小相同,所以在喂入网络之前,它们也会被插值[140]。

有人建议,为了标准化图像和获得可比较的(即在统计分析中可汇总的)手工放射影像特征,将图像插值到一个公共的体素大小可能不足以完全消除中心效应[141]。如果选择最低公共分母,那么过滤图像以实现相似的空间分辨率可能在纹理分析方面相当有害[142],这意味着高分辨率的图像被平滑,从而去除了细节。

另一种最近开发的有前途的方法是依赖于通过深度网络,如生成对抗网络(GANs)进行的图像合成。这个想法是为了标准化的特定目标,合成具有更相似属性的图像,以便从标准化的图像中提取的手工放射影像特征是可比较的,或者方便深度神经网络建模的训练。最近的一项工作研究了不同重建内核对放射影像特征的影响,并评估了在104例肺癌患者的数据库中训练一个CNN将图像从一种重建内核转换为另一种重建内核对手工特征可重复性的好处[143]。研究证明,不同的重建内核导致大部分特征具有显著不同的分布(702个特征中的595个),而在建议的基于CNN的图像转换后,更多的特征不再表现出显著的差异(57%,702个特征中的403个)。然而,几乎一半的特征仍然表现出差异。另一项最近的工作依赖于一个两步的框架,使用条件生成对抗网络(cGANs)对多中心MRI脑图像进行标准化[144],而另一项工作则依赖于通过一个循环一致的GAN,使用2对生成器-鉴别器对,对未配对的MRI图像进行双向转换,以实现乳腺DCE-MR图像的标准化[145]。第三项研究实施了一个双GAN框架,对新生儿大脑的扩散张量成像(DTI)衍生指标进行标准化,显示出比体素规模和ComBat等标准方法更好的标准化性能[146]。然而,这些研究并未广泛评估这些影响在多中心放射影像学研究中的结果。

最近的一项研究在多中心CT图像的背景下做到了这一点,通过依赖于在不同数据集上训练的GAN来学习如何从一个领域标准化到另一个领域。然后,使用77个放射影像学特征训练一个套索分类器,根据患者的生存情况对他们进行分层,并在不同的领域中使用交叉验证框架进行评估[147]。结果显示,依赖于标准化的图像提取放射影像学特征,提高了套索分类器的性能,接收者操作特征曲线下的面积平均提高了11%(从3%增加到32%)。

5.4. 特征域的标准化

5.4.1. 基于特征的可靠性进行特征选择

一种策略是在进行任何统计分析之前,因为它们被认定为不可靠(即,在应对轻微的采集和重建设置变化[130]或在测试-重测框架中表现出不合理的变化[148]),所以要消除放射影像学特征[149]。这可以帮助在新数据上测试时构建具有更高验证性能的模型,因为预期模型中包含的特征对图像属性的潜在差异具有稳健性。这种方法的另一个优点是,它大大减少了建模步骤中需要处理的变量数量,这可以方便特征的选择和多参数模型的构建。然而,需要考虑的一个缺点是被丢弃的特征所携带的潜在临床相关信息的损失。人们只能希望预测能力仍然可以在剩余的特征中找到。此外,为每种临床应用和影像数据类型的组合确定既足够可靠又含有足够临床相关信息的特征,需要为每种情况进行最适当的操作。

由于许多放射影像学特征已被证明依赖于计算中包含的体素数量[150],因此有人提议修订特征定义本身,通过在数学公式中包含体素数量来消除或减少这种依赖性[151]。恰好,这可以有助于减少由于从具有不同体素大小的图像(因此,对于类似的感兴趣体积,体素数量不同)中提取的放射影像学特征之间的差异,正如在8个不同CT扫描仪(来自3个不同制造商)获取的纹理幻影数据中所显示的[151],并在肺癌图像中进一步验证[152]。

5.4.3. 标准化

已经提出了大量的统计方法用于数据标准化[153]。

一些研究专门评估了标准化技术在修正由于影像设备、采集协议或重建的变化而产生的放射影像学特征偏差和差异方面的效益。例如,一个由于CT采集中曝光差异导致的特征修正和偏差减少的方法被提出,该方法通过从水模和临床数据中学习如何模拟这些差异,然后将学到的修正应用于特征值,从而显示出至少47个特征中有62个特征的标准偏差降低了2倍[154]。另一项最近的工作训练了一个深度神经网络,通过依赖一个公开可用的纹理幻影数据集,来标准化来自不同扫描仪模型和采集和重建设定的放射影像学和“深度”特征[155]。它还展示了将学习到的标准化应用到来自未知扫描仪的新数据的能力。另一项研究证明了使用标准化来获取更稳健的预测放射影像学模型以在外部数据中进行验证的方法,该方法是分别对每个数据集进行特征标准化,而不是对所有数据集进行组合标准化[156]。另一项研究依赖于z-分数标准化来调和从预处理MRI中提取的放射影像学特征,以构建一个预测反应的模型,该模型在8个不同中心的275名宫颈癌患者的多中心研究中进行了验证[157]。预测模型取得了高性能,尽管该研究没有报告不进行标准化的性能。

5.4.4. 批次效应移除

ComBat 设计为估计一个批次特定的变换,以将所有数据表达在一个没有中心效应的公共空间中[158],并且已经被证明即使对于小数据集也能提供满意的结果[159]。尽管之前在不同领域(包括基因组学)中对ComBat和类似技术进行批次效应校正的比较表明ComBat的优越性,但是针对放射影像学的特定环境对上述标准化技术进行广泛比较的工作尚未进行。最近,一项研究比较了ComBat、SVD分解和体素大小重采样在使用水模数据和肝转移的结直肠/肾癌患者临床队列的CT影像环境中的应用[160]。结果表明,使用ComBat能够达到最好的数据调和效果。

ComBat首先在PET[133]影像学环境中用于放射影像特征的调和,并后来在CT[161]和MRI[162]中进行了评估。它已经在许多放射影像临床研究中被利用来改进预测模型的结果:在FDG PET和MRI放射影像学中用于局部晚期宫颈癌(在调和前的准确性从76%提高到81%,在将ComBat应用到三个中心后提高到81-97%)[163];在FDG PET/CT中用于早期肺癌,其中特征在未调和的情况下预测能力较低,而ComBat允许验证在3个中心训练的模型在应用到第四个中心时的效果[164]。该方法的优势也在乳腺癌的DCE MRI影像中得到评估,用以区分3150个恶性和良性病变,其中使用调和特征的分类性能显著提高(p < 0.001)[165]。最近,该方法在一项多中心CT研究中被用来调和从不同CT扫描仪中提取的放射影像特征,以建立可靠的模型预测COVID-19患者的结果[166]。然而,这项研究没有报告在没有ComBat的情况下放射影像特征的性能。最后,在最近的一项研究中,放射影像模型被用来识别低剂量CT早期诊断肺癌的恶性结节,并进行了外部验证[167]。所有的模型在外部验证集中都有很高的性能(AUC高于0.82),并且当依赖ComBat调和的特征时,这并没有显著改变。

因此,ComBat似乎是一个有希望的、操作简单的方法来进行放射影像特征的调和,只要标签的数量是合理的,变化的来源可以被识别和标记。在非常高的异质性情况下,如果使用ComBat的标签数量相对于患者数量过高,可以依赖无监督聚类来识别可能用于调和的标签[168]。为了避免特征在调和后失去它们的物理含义,可以使用一种允许选择一个参考标签来对齐其他标签(而不是将所有分布平均到一个任意的大均值)的ComBat变体,即M-ComBat,这样就不会损失性能。最后,通过引导和蒙特卡罗(B-Combat)[168],可以提高估计的稳健性。

6.讨论和结论

在现代放射肿瘤学中,AI技术在许多研究领域找到了几种应用,范围从诊断的图像处理到精确治疗方案的优化。利用影像生物标志物和放射影像特征提供了一种新的定量图像分析度量,旨在支持临床决策,包括在多种疾病中的检测、特征化和治疗计划。深度神经网络(DNNs)似乎为医学影像和放射治疗领域提供了一次潜在的革命,开启了诊断和治疗放射协议个性化的新时代[169]。尽管深度学习方法在影像生物标志物的开发中的速度快且增长迅速,但放射影像学的最新方法在可解释性、同质化方法(多中心数据调和)方面存在几个限制,并需要应对巨大的挑战。

尽管在放射影像学中发展了深度学习模型,但理解和解释分类和预测是如何完成的这一概念仍然是一个问题。可解释性人工智能的概念,所使用的度量和解释性的评估在科学界中被高度争议并正在被研究。此外,放射影像学的重复性、可转移性和可重现性也引起了高度关注,因为它们依赖于每个特定的影像获取。在最近的一项研究中,作者调查了在回顾的研究中似乎可重复和可再现的影像生物标志物放射影像学[170]。在这个框架下,国际生物标志物标准化倡议(IBSI)提供了指南和放射影像学的命名和定义,以支持在放射影像学领域对特征提取的验证[16]。

深度学习放射影像特征(DLR)可能在深度神经网络中提供优势,显示出比基于特征的放射影像学更高的泛化和可转移性。然而,即使是为DLR开发的模型,它们在临床实践中的应用仍然缺乏可靠性和可解释性。

在模型的标准化和泛化上付出努力,应用协调方法来理解多个已发布的结果,这一点至关重要。然而,小数据集,依赖于图像获取协议(数据分析,成像方式,图像质量,处理方法)仍然是复杂的问题,这使得理解变得困难。目前,科学界已经有多种开源软件可用于放射影像学研究,例如,Keras [171],TensorFlow [172],LifeX [173],MaZda [174],PyTorch和PyRadiomics [175]。尽管这些软件包中应用的程序和工作流程并不简单且缺乏泛化,结果使得研究者无法充分理解结果,更不用说复制它们了。

最后但并非最不重要的是,放射影像学的主要问题是他们在临床日常中的可解释性。到目前为止,大多数的放射影像学提取和影像生物标志物分析都被用作“黑盒”,使得他们的临床应用变得不可能 [29]。值得鼓励的是,上述的限制现在已经被广泛了解,并在最近的文献中得到了广泛的讨论,推动了更为聚焦的研究,着眼于解决这些挑战,并寻找在放射影像学领域利用AI发展的临床应用方式。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值