PNAS:皮层活动中的高幅度共波动推动功能连接

尽管功能连接具有广泛的应用,其起源仍然难以捉摸。在这里我们分析人类的功能性神经影像数据。我们分解静息态功能连接在时间上的变化,以评估瞬间活动的共波动对整体连接模式的贡献。我们展示功能连接是由少数高幅度帧驱动的。我们表明这些帧是由大脑活动的一种特定模式支持的;这种模式的地形在扫描任务中得到调节;并且高幅度帧编码个性化的,特定于受试者的信息。总的来说,我们的无参数方法为功能连接和逐帧共波动提供了一个精确的数学联系,为研究静态和时变功能性脑网络创造了机会。本文发表在PNAS杂志。

摘要

静息态功能连接被广泛应用于神经科学,用于研究大脑组织,并生成关于发育、疾病和认知的生物标记。然而,我们对产生相关活动的过程知之甚少。在这里,我们使用一个时间解包程序来分解静息态功能连接,以评估瞬间活动的共波动对整体连接模式的贡献。这种方法在单帧的时间尺度上解析功能连接,使我们能够直接比较网络组织的共波动和血氧水平依赖性(BOLD)时间序列的波动。我们发现,令人惊讶的是,只需要一小部分表现出最强共波动幅度的帧,就能解释连接权重的整体模式以及网络模块结构的显著部分的方差。这些帧与BOLD活动幅度较高的帧重合,对应于在个体之间非常一致的活动模式,并确定默认模式和控制网络活动的波动作为静息态功能连接的主要驱动因素。最后,我们证明在观看电影时,共波动幅度在受试者之间同步,而高幅度帧携带关于个体受试者的详细信息(而低幅度帧则携带很少的信息)。我们的方法揭示了静息态功能连接的细粒度时间结构,并显示出逐帧贡献随时间变化。这些观察结果阐明了大脑活动与功能连接的关系,并为未来的研究开辟了一系列方向。

静息态功能连接(rsFC)指的是功能磁共振成像(fMRI)的血氧水平依赖性(BOLD)活动的相关结构,通常在整个扫描会话期间进行估计(1, 2)。个体间差异在rsFC中已经与生物学年龄(3, 4)、认知状态(5)和临床状态(6)的变化相联系。其他研究强调了rsFC的动态特性,使用滑动窗口技术在时间上生成rsFC的模糊估计(7-9),并将网络结构的变化与行为(10, 11)和表型(12, 13)联系起来。尽管人们对此表现出浓厚的兴趣并得到广泛应用,但支持和塑造rsFC的过程尚未完全理解。例如,连接性的瞬间波动是如何对更长时间尺度上估计的rsFC模式作出贡献的?连接性的变化是如何通过大脑活动的瞬时波动得到支持的?

原则上,可以通过使用滑动窗口方法来跟踪时间内rsFC的波动来解答这些问题。然而,窗口处理会产生一种模糊效应,使得无法在时间上定位时变连接性,也无法评估单个帧所作出的贡献(14)。另一方面,像共激活模式(CAPs)这样的方法允许以单帧的分辨率来描述大脑动态(15-19)。使用这些类型的方法,以前的研究已经表明,共激活模式随时间波动,大脑的系统级组织仅在一组选定的时间点上表现出来(20)。然而,这些方法通常需要指定一个种子区域或一个阈值来确定什么构成高幅度活动。因此,对于这些共激活模式如何组合在更长的时间尺度上产生rsFC的全面和数学精确的解释仍然是难以捉摸的(21)。

在这里,我们使用数学上精确的方法,将rsFC分解为其逐帧贡献,明确地将瞬时的共波动模式与更长时间尺度上的rsFC联系起来,以解答这些问题(22, 23)。我们发现,在静息状态下,共波动是突发的,并以整个大脑共波动事件的形式间歇性地发生,这与呼吸、心律和扫描期间的运动无关。然后我们展示,仅使用高幅度帧估计的rsFC与整个扫描会话期间估计的rsFC高度相关,表明rsFC及其系统级组织是由相对较少帧期间的共波动驱动的。接着我们展示,高幅度的共波动是由大脑活动的一个特定空间模式的激活支持的,其中默认模式和控制网络与感觉运动和注意系统是反相关的。然后,我们对高幅度共波动进行了两个仔细的检查。首先,我们证明在观看电影时,共波动幅度的时间序列在受试者之间同步,其次,我们展示在高幅度帧期间,与低幅度帧相比,受试者的“指纹”得到增强。

材料和方法

数据集

我们分析了三个独立的数据集。具体而言,我们关注来自人类连接组计划(HCP)和MSC的静息态数据。这些数据经过类似的处理,具体细节在本节中描述。第三个数据集包括来自29个个体的静息态和观看电影的数据,已在其他地方进行分析(28, 49, 80)。该数据集使用不同的程序单独处理,并在其自己的章节中描述。处理流程导致皮层在HCP和MSC数据集的情况下被划分为 =200个区块(节点)(81),在印第安纳大学数据集的情况下被划分为 =114个区块(52)。处理流程在SI附录中详细描述。

共波动时间序列

从fMRI数据(或任何神经时间序列数据)构建网络需要估计每一对时间序列之间的统计依赖性。该依赖性的大小通常被解释为这些体素或区块彼此在功能上是如何强烈(或弱)地连接在一起的度量。到目前为止,最常用的统计依赖性度量是皮尔逊相关系数。令 =[ (1),…, ( )] 和 =[ (1),…, ( )] 是从体素或区块 和 记录的时间序列。分别来说。我们可以通过首先对每个时间序列进行z标准化来计算 和 的相关性,使得

,其中

是时间平均的均值和标准差。然后, 与 的相关性可以计算为

。对所有区块对重复此过程会得到一个节点对节点的相关矩阵,即FC的估计。如果有 个节点,这个矩阵的维度是[ × ]。

为了估计以边为中心的网络,我们需要以一种微小但至关重要的方式修改上述方法。假设我们有两个z标准化的区块时间序列, 和 。为了估计它们的相关性,我们计算它们的逐元素乘积的均值(不完全是平均值,因为我们除以 −1而不是 )。假设我们不计算均值,而只在计算逐元素乘积后停止。这个操作将得到一个长度为 的向量,其元素编码了区块 和 的时刻到时刻的共波动幅度。例如,假设在时间 ,区块 和 同时相对于基线增加了它们的活动。这些增加在 和 中以 位置的正条目编码,因此它们的乘积也是正的。如果 和 同时减少它们的活动,情况也是如此(因为负数的乘积是正数)。另一方面,如果 增加而 减少(反之亦然),这将表现为负条目。同样,如果 或 增加或减少,而另一个的活动接近基线,相应的条目将接近零。

因此,由 和 的逐元素乘积得到的向量可以看作是编码了 和 之间时刻到时刻的共波动幅度。可以很容易地为每一对区块(网络节点)计算类似的向量,从而得到一组共波动(边)时间序列。对于 个区块,这将产生 ( −1)/2对,每对长度为 。

模块性最大化

模块性最大化是一种用于检测网络中社区的启发式方法(82)。直观地说,它试图将网络分解为不重叠的子网络,使得子网络内的连接密度最大限度地超过随机情况下预期的密度,其中随机情况由用户确定。检测社区的实际过程是通过选择最大化模块性质量函数 的社区分配来完成的, 定义为:

其中, = − 是模块矩阵的 { , } 元素,表示节点 和 之间的连接的观察权重减去期望权重。变量 是节点 的社区分配,而 ( , ) 是克罗内克尔δ函数,当 = 时,其值为1,否则为0。模块性 实际上是落在社区内的所有边的总和,当观察到的连接权重最大地超过预期时,它是最优化的。通常, 的较大值被认为反映了更优的社区划分。

符号和相关矩阵。在本文中,我们使用了模块性的以下变种, ∗,已被证明特别适合用于相关矩阵(33):

其中,

在这个表达式中,

代表相关矩阵的正元素或负元素,

差异可识别性

设 1为一个 × 的功能连接(FC)矩阵。我们可以通过提取其上三角元素将此矩阵表示为一个 = ×( −1)/2维向量。我们可以通过计算两个矩阵 1和 2的向量表示的相似性来评估两个矩阵的相似性。假设我们有来自多个个体的多次扫描。设 和 ℎ 分别为平均的内部和外部受试者之间的相似性。那么,差异可识别性简单来说就是 = − (48)。直观地说, 的值越大,群体层面的指纹就越强(46)。

结果

两个大脑区域之间的静息态功能连接(rsFC)的强度可以通过计算它们的fMRI BOLD时间序列的皮尔逊相关系数来量化,该相关系数在z标准化后以它们的逐元素乘积的平均值来计算(24)。通过省略平均步骤,我们可以在时间上展开相关性度量,从而得到一组新的时间序列——每对大脑区域(网络边)的一个——其元素代表在时间的每个时刻解析的这些区域之间的共同波动的幅度(图1A)。这些边缘时间序列可以直接分析,以精确定位大脑区域对之间的共同波动的幅度和时间。

图1. 共同波动时间序列揭示了静息态功能连接的突发结构。

  1. 我们使用皮尔逊相关性的时间展开来为每一对脑区(边)生成共同波动时间序列。共同波动时间序列的元素是z标准化的区域性BOLD时间序列的逐元素乘积,当在时间上取平均时,产生的向量完全等于皮尔逊相关系数,并且可以重新排列以创建静息态功能连接矩阵。
  2. 我们发现共同波动时间序列包含许多边在时间上集体共同波动的时刻。我们可以通过计算所有共同波动时间序列的RSS并将此值作为时间的函数进行绘制来识别这些时刻。在B中,我们标记了高幅度和低幅度帧。边的共同波动幅度的分布是重尾的。我们想要评估高幅度和低幅度帧对功能连接总体模式的贡献。为此,我们提取了所有时间点的前5%和后5%(按共同波动幅度排序),并仅从这些点估算功能连接。
  3. 使用前5%(左)和后5%(右)时间点计算100名受试者的平均功能连接。
  4. 通常,使用前5%的时间点估算的网络与传统功能连接相比,比使用后5%的时间点估算的网络更相似。
  5. 我们使用使用前5%和后5%帧重建的网络执行了类似的网络模块性比较。

在“静息态功能连接(rsFC)由短暂和高幅度的共同波动事件驱动”和“高幅度帧由大脑活动的任务正/任务负模式的波动驱动”中,我们分析了从人类连接组项目(25, 26)(参见材料和方法以获取详情)获取的功能成像数据构建的共同波动时间序列。在这些部分报告的所有结果都使用这些数据生成;我们使用第二个数据集(27)复制这些发现,结果报告在SI Appendix中。在“被动观看电影期间全脑共同波动幅度的被试间同步”和“高幅度共同波动增强可识别性”中,我们分析了一个独立获取的观看电影数据集(28, 29)和来自午夜扫描俱乐部(MSC)(27, 30)的数据。

rsFC受短暂且高幅度的共同波动事件驱动。虽然过去的研究已经使用滑动窗口方法来生成rsFC的时刻到时刻波动的估计值(例如,参考文献8和9),但使用窗口化过程会导致rsFC的时间模糊估计。这限制了关于功能连接动态变化的观察时间尺度,通常是几十帧的数量级(大约1分钟的实际时间,尽管我们注意到最近一些团队已经探索了估计逐帧时间尺度的时间变化FC的方法,例如,参考文献31和32)。在这里,我们使用共同波动时间序列来解决这个限制。当在整个大脑中分析时,我们发现边缘时间序列表现出突发行为,即共同波动的幅度(通过计算根平方和[RSS]来量化)围绕平均值移动,但被短暂的、间歇性的、和不成比例的大幅度波动所打断(图1B)。这些高幅度帧与心脏和呼吸周期、扫描仪内头部运动(SI附录,图S1)以及fMRI BOLD时间序列的频谱特性(SI附录,图S2)没有直接关联,并且以重尾分布的大小、持续时间和间隔表现出非周期性(SI附录,图S3)。

为了更好地理解瞬时共同波动是如何贡献于整个大脑的rsFC,我们隔离了高幅度帧并将它们与低幅度片段进行比较(在共同波动幅度方面的前5%和后5%;HCP的60帧;参见SI附录,图S4,其他百分位的比较)。然后,我们分别为每个类别估计rsFC,只使用对应于这些时间点的fMRI BOLD数据,并比较所得网络。首先,我们发现在高幅度帧期间的连接权重明显强于低幅度(样本内t检验, <10^-15;图1C)。接下来,我们计算了在高幅度和低幅度片段期间估计的rsFC与使用完整时间序列估计的时间平均rsFC的相似性。我们发现高幅度网络与rsFC高度相关( =0.81±0.05),而低幅度网络的相关性要低得多( =0.54±0.07),并且这些差异是高度显著的(t检验, <10^-15;图1D)。我们还进行了类似的网络模块性比较(33),这是一个可以解释为网络系统彼此隔离程度的指标。与之前一样,我们发现在高幅度网络中模块性更大( =0.51±0.06),与从低幅度帧估计的网络相比( =0.37±0.05)(t检验, <10^-15;图1E)。

在SI附录中,我们在第二个数据集中展示了类似的结果(SI附录,图S5)。我们还证明,即使使用非常保守的运动伪迹审查,这些效应仍然持续(SI附录,图S6),当使用一种替代策略从前5%和后5%的时间点估计网络时(SI附录,图S7),以及当与一个在保留共同波动幅度的时间结构的同时从整个时间序列随机抽取帧的零模型进行比较时(SI附录,图S8)。

总的来说,这些结果表明,通过长时间尺度估计的rsFC,是由少量短暂、间歇性和高幅度的共同波动驱动的。这些时间点上的网络结构对大脑皮层的整体模块性和系统级组织产生不成比例的贡献,这是通过rsFC的长时间平均来估计的。相反,低幅度的共同波动与rsFC的整体模式只有弱相关,并对应于较少的模块化架构。

高幅度帧受大脑活动的任务正/任务负模式的波动驱动。在上一节中,我们展示了时间平均的rsFC可以通过发生在相对较少数量的帧期间的高幅度共同波动来解释。然而,目前还不清楚高幅度帧是否由大脑活动的特定模式支持,或者它们是否反映了来自多个不同模式的贡献。在这里,我们直接解决这个问题,通过研究与高幅度帧同时发生的大脑活动模式。

作为第一个比较点,我们计算了共同波动时间序列以及z标准化的fMRI BOLD时间序列的根平方和(RSS)。我们发现,在受试者之间,这些时间序列高度相关( =0.97),表明高幅度帧几乎与高幅度BOLD波动一一对应(图2A)。这种关系是预期的;因为共同波动是以z标准化的区域活动的乘积计算的,它们的幅度必然会相互关联。

图2 网络共同波动与BOLD波动的关系。

在“rsFC受短暂和高幅度共同波动事件的驱动”一节中,我们展示了静息态功能连接性可以基于发生高幅度共同波动的相对较少的帧来解释。在这里,我们将这些共同波动帧与BOLD活动波动联系起来。我们首先计算每个时间点的BOLD活动的RSS幅度,并将其与共同波动的幅度进行比较。

(A) 汇总来自不同受试者的数据,我们发现这两个变量高度相关。

(B) 为了进一步研究这种关系,我们提取每个受试者在共同波动幅度排名的前5%和后5%时间点的每次扫描的平均活动模式。这里我们展示了这些活动向量的相关矩阵。

(C) 然后,我们对这个相关矩阵进行了主成分分析,并发现第一主成分(PC1)的系数绝对值对于前5%大于后5%,并且(D 和 E) PC1分数对应于强调默认模式和控制网络的相关波动的活动模式,这些波动与大脑其他地方的波动弱相关或反相关。星号表示系统的平均PC1分数显著大于随机期望值(置换检验;FDR固定在5%; =0.018)。这些观察结果表明,驱动静息态功能连接性的高幅度共同波动,是由默认模式和控制网络区域的瞬时激活和去激活所支持的。

考虑到在高幅度帧期间BOLD活动的波动较低幅度帧更大,我们询问它们是否形成了一种一致和可识别的活动模式。为了解答这个问题,我们计算了每个受试者在高幅度和低幅度帧期间的平均活动模式,并计算了受试者之间和扫描之间的相似性(图2B)。总的来说,与低幅度帧期间的活动模式相比,高幅度帧期间的活动在受试者之间更相关(t检验, <10^-15)。为了更好地理解是什么驱动了这些相关性,我们对所有受试者和扫描期间的高幅度和低幅度帧的活动模式进行了主成分分析。我们关注第一个主成分(PC1),它解释了总变异的26%。平均而言,与低幅度帧相比,PC1的系数对于高幅度帧更大(t检验, <10^-15;图2C),表明PC1描述了高幅度帧期间的活动模式,但对于低幅度帧则不太如此。然后,我们将PC1的分量分数映射到皮层表面,并发现PC1对应于一种活动模式,该模式将默认模式和控制网络中的区域与感觉运动和注意网络区分开来(图2D和E)。我们在第二个数据集中复制了这些结果(SI Appendix, Fig. S9)。

这些结果表明,高幅度帧的基础是一种大脑活动模式,其空间模式类似于传统的任务正/任务负大脑划分。这种活动模式在个体之间是相似的,表明大脑活动产生静息态功能连接性(rsFC)的一种机制。这些观察结果表明大脑活动和连接性之间的基本联系,并进一步阐明了高幅度帧的起源。

在被动观看电影过程中,整个大脑的共波动幅度在受试者之间的同步性。

在前面的部分,我们展示了rsFC可以被视为时间变化的共波动的平均值。我们还发现,时间平均的rsFC受到高幅度帧的不成比例影响,这些高幅度帧本身是由一种特定的大脑活动模式支持的,并且与运动或生理伪影无明显关联。那么,高幅度帧的目的是什么?它们是随机的共波动,还是与个体的大脑/认知状态的波动有关?为了回答这些问题,我们研究了一个受试者队列的共波动时间序列,该队列包括29名受试者,在静息状态和被动观看复杂的自然刺激(电影)时进行了多次扫描。

具体来说,我们计算了两种条件下所有受试者和扫描的边时间序列。从这些边时间序列中,我们估计了所有节点对的共波动幅度。对于给定的扫描,这个过程会产生29个时间序列(每个受试者1个),长度相同。我们发现,在观看电影时,共波动时间序列在受试者之间是相关的(见图3 A和B),但在休息时不相关(见图3 C和D)。我们直接比较了条件之间的受试者间相关性的分布(来自同一条件的所有扫描汇集在一起),发现正如预期的那样,观看电影时的平均受试者间相关性大于休息时(置换检验, <0.05;见图3E)。重要的是,我们发现对于RSS值的整体幅度,在条件之间没有差异(置换检验, =0.07;见图3F)。

图3 在被动观看电影时,整个大脑的共波动幅度同步。

我们比较了静息状态和观看电影时的共波动时间序列。对于这两种条件,我们计算了29名受试者的共波动时间序列。我们在A(电影)和C(休息)中展示了这些时间序列。我们发现,当受试者观看电影时,他们的共波动时间序列是同步的,这可能是由于共享的视听刺激。而在休息状态时,共波动时间序列是不同步的。通过计算受试者的共波动时间序列的受试者间相关矩阵,我们证明了这种同步性。我们在B中展示了观看电影时的矩阵,而在D中展示了休息时的矩阵。通过比较这些矩阵的元素,我们证明了观看电影导致受试者间相关性增加。我们在E中展示了分布。然而,我们发现,波动的整体幅度(RSS)在两种条件下没有统计学上的差异(F)。

为了进一步比较这两种条件,我们重复了“高幅度帧由任务正/任务负大脑活动的波动驱动”一节中的分析,以识别支撑高幅度帧的大脑活动模式。我们发现,静息模式重现了前一节中报告的拓扑分布(H),强调任务正/任务负划分。然而,在观看电影时,活动模式强调视觉和背向注意网络的贡献(G)。在I-K中,我们更直接地比较休息和观看电影时的活动模式。I展示了模式在区域上的差异,J按系统对这些差异进行分组,而K以散点图的形式展示它们,强调与视觉、背向注意以及突显/腹侧注意网络相关的差异。

接下来,我们在高幅度和低幅度帧期间的大脑活动模式方面探索了观看电影和休息的差异。我们的探索包括两个分析。首先,与前一节相同,我们分别提取了观看电影和休息条件下高幅度和低幅度帧(按共波动幅度排名的前5%和后5%)的活动模式。然后,我们对这些矩阵执行主成分分析(PCA),并保留每个条件的顶部PC分数。有趣的是,这些PC分数展示了不同的拓扑结构;观看电影的PC(图3G)强调视觉和背向注意网络的活动,而休息的PC(图3H)重现了前一节中显示的模式,强调任务正/任务负的活动模式。为了直接比较这两种模式,我们计算它们的逐元素(按区域)差异,并按系统对这些差异进行分组(图3 I和J)。不出所料,我们发现在背向注意和视觉系统中存在统计学上显著的差异(观看电影 > 休息;假发现率固定在 =0.05)以及突显/腹侧注意系统(观看电影 < 休息)。当我们将PCs相互对比时,这些差异更加明显,显示出这些系统偏离了一致性线(图3K)。

我们注意到,比较观看电影和静息状态的另一种策略是通过将两种条件的高幅度活动模式连接成一个单一矩阵,并使用PCA联合分解该矩阵,从而同时分析它们。这个过程产生的活动模式在两种条件下都是共享的。在这里,我们保留了第一和第二主成分(SI 附录,图 S10 A 和 C),其空间拓扑结构与我们在图3 G和H中展示的类似。不出所料,我们在PC系数方面发现两个图之间存在差异,观看电影的帧更强烈地加载到第一个图上(排列测试, <0.05;SI 附录,图 S10B),而静息状态的帧更强烈地加载到第二个图上(排列测试, <0.05;SI 附录,图 S10D)。

综合看,这些结果补充了我们之前的发现,即共波动时间序列与运动或生理伪像没有明显关联。重要的是,我们证明了当受试者共同面对复杂的、时变的和自然刺激时,他们的共波动时间序列会同步。这一观察,加上观看电影和静息状态在高幅度帧期间的活动的拓扑差异,强烈表明共波动幅度至少在一定程度上受受试者的认知状态的调节。

高幅度共波动增强可识别性。

在前面的章节中,我们展示了高幅度帧对大脑的静态功能连接(FC)模式有着不成比例的贡献,塑造了其模块结构,由群体水平的大脑活动模式支撑,并在观看自然刺激时同步。那么它们是否也增强了单个受试者的可识别性?也就是说,使用高幅度帧估计的功能连接是否比使用低幅度帧估计的功能连接更具有受试者的特征?

为了测试这个问题,我们计算了每个时间点的共波动幅度(图 4A,i)。然后我们隔离最高幅度的帧,并仅使用这些帧来估计功能连接(图 4A,ii)。对所有受试者和扫描重复此过程,得到一组100个特征向量(10个受试者×10个扫描),编码受试者的功能连接模式(图 4A,iii)。然后我们计算[100×100]的相似性矩阵——也称为识别性矩阵,并比较受试者内相似性的平均值与受试者间相似性的平均值(图 4A,iv)。这个度量——差分识别性——表明受试者的功能连接模式与自身相比,与其他受试者的相似性有多大。我们使用仅包含低幅度帧重复整个过程(图 4A,v-vii),并比较低幅度和高幅度的差分识别性。

图4 在高幅度帧时,连接组指纹较强,在低幅度帧时较弱。

我们调查了在高幅度或低幅度共波动期间,静息态功能连接(rsFC)的受试者特异性特征是否更为普遍。为了解决这个问题,我们确定了具有最高和最低共波动幅度的帧(时间点),并仅使用这些数据估计受试者的功能连接。然后我们计算了受试者间的相似性矩阵,即识别性矩阵。

(A)这个一般过程的示意图,首先是隔离高幅度时间点(i),估计功能连接(ii),对所有受试者重复此过程(iii),并估计受试者间的相似性矩阵(iv)。对于低幅度帧,执行了相同的过程,并在v-vii中进行了说明。

(B)我们使用按共波动幅度排序的顶部(红色)和底部(蓝色)帧计算了受试者内和受试者间相似性的平均值。对于每一组帧,我们生成两条单独的曲线,一条用于受试者内的相似性,另一条用于受试者间的相似性。曲线之间的区域是差分识别性,或者说是受试者的功能连接模式与自身相比,与其他受试者估计的功能连接的相似程度。

(C)我们发现,当使用按幅度排序的顶部帧估计功能连接时,差分识别性总是更大。为了便于可视化,我们展示了使用(D)高幅度和(E)低幅度帧估计的识别性矩阵。

总的来说,我们发现在高幅度帧期间,受试者间的相似性大于低幅度帧,且在一系列的阈值上也是如此(图 4B)。重要的是,我们还发现,当使用高幅度帧进行估计时,受试者内和受试者间相似性之间的差距,即差分识别性,也更大(图 4 C-E)。这个观察表明,高幅度帧可能携带关于受试者的更多个性化和可区分的信息,而不是低幅度帧。

讨论

在这里,我们提出了一种通用方法,通过展开皮尔逊相关性来生成沿网络边的区域间共波动时间序列。这个简单的程序使我们能够解析单个帧对静息态功能连接(rsFC)的贡献。我们发现,通常情况下,我们可以使用来自相对较少数量的帧的数据准确估计整个大脑的静息态功能连接及其系统级组织。重要的是,我们将这些帧链接到一个高模块化的大脑状态,并且链接到一种特定的大脑活动模式,在该模式中,默认模式和控制网络与感觉运动和注意系统相反地波动。我们的结果还表明,粗略地说,共波动模式捕捉到与认知相关的大脑状态的波动,并且高幅度帧编码了个体的特征。

将静态FC分解为共波动快照。本文的核心是观察到静态FC可以非参数地分解为一系列随时间变化的快照,每个快照都表达了一个即时的区域间共波动模式。关键的是,这些模式在时间上的平均值恰好等于整个大脑的静态FC。这个数学真理使我们能够整齐地评估瞬间共波动对整体FC模式的贡献,并建立FC与大脑活动波动之间的清晰联系。

我们的发现补充了之前的工作(15-18,20,32),利用将FC精确分解为其逐帧贡献的数学方法,表明静态FC是由来自相对较少时间点的贡献驱动的,即那些具有最高共波动幅度的时间点。另一方面,共波动程度较低的帧贡献很少。因为共波动时间序列是以单帧的时间分辨率估计的,我们直接比较了具有一致大脑活动模式的高幅度帧。我们确定在休息状态下,高幅度的共波动与一种强调感觉运动和联合皮层的对立激活的特定大脑活动模式同时发生。值得注意的是,其他基于状态的大脑动态分析(39,40)也报告了类似的活动模式,将这种活动模式与清醒休息期间的思维和工作记忆表现相关联。

这里报告的观察结果既澄清又挑战了关于静态FC和大脑网络动态(41)的核心假设。具体来说,我们的发现表明,整个大脑的FC在高维状态空间中沿着一条突发性轨迹运动,其中延长的安静时期被短暂且间歇性的事件打断,而这些事件的时机与运动或生理伪像并没有明确的关系(42)。这一观察引出了几个问题,其中最重要的是关于高幅度帧的起源。它们是自发出现的吗?它们以任何方式与正在进行的认知过程相关吗?高幅度帧有多个性化?

将高幅度共波动与认知和个体差异联系起来。为了澄清高幅度帧的起源,我们进行了两个单独的分析。首先,我们比较了它们在休息和观看电影(28)期间的结构。虽然我们发现在不同条件下共波动的幅度在统计上没有差异,但我们发现在观看电影期间共波动是相关的,这表明高幅度帧可能是由电影中的音频视觉特征驱动的。这一发现支持高幅度帧的时机与感知和处理感官信息相关的假设,并进一步表明高幅度帧不仅仅是自发出现的。这些观察为未来的研究开辟了可能性,利用共波动幅度的时间结构来跟踪个体的认知状态随时间的变化。

值得注意的是,我们还发现在观看电影时与休息时高幅度共波动所依赖的大脑活动模式存在差异。特别是,我们发现视觉和背侧注意网络的表达更强,人们可能会假设这些大脑系统在处理视觉信息和在观看复杂的自然刺激时重新分配注意资源方面起着重要作用(43, 44)。这一发现还表明,尽管高幅度共波动可以在相关的模块化系统中自发发生,但它们的特性和时机会受到随时间变化的感官输入的调节,为未来的研究提供了一个机会,以全面绘制高幅度共波动的任务诱发的地形图(45)。

在我们的第二个分析中,我们想探究高幅度共波动是否具有个性化和特异性(27, 46, 47)。为了解决这个问题,我们分别使用高幅度和低幅度帧来估计受试者的FC,并在差异可识别性方面比较这些网络 —— 即FC模式的相似性在受试者内部强于受试者之间的程度(48)。令人惊讶的是,我们发现在高幅度共波动期间可识别性显著增强,这表明在这些帧期间表达的受试者特定信息更强。

总的来说,这些发现表明高幅度共波动的结构是高度有组织的。它跟踪认知状态的时变波动,并且具有深度个性化特征。这些是关键的观察,对于研究大脑与行为的关联、临床神经科学和表型发现具有明确的意义,因为在这些领域,进行推断的能力受到可用数据量的限制。我们的结果表明,通过利用高幅度共波动比低幅度共波动携带更多受试者特定信息的事实,我们可能可以使用相对较少的帧数并减少所需数据量来生成稳健的网络级生物标志物(49)[我们注意到这个概念正在使用其他成像方式进行探索(50)]。这种方法在临床和发展神经科学中可能尤其有用,因为它们研究的人群通常具有不允许进行长时间扫描的特征,而长时间扫描是稳定估计FC(功能连接性)所必需的(51)。例如,由于高幅度共波动比低幅度共波动携带更多关于静态FC的信息,并且因为它们编码了受试者的可识别特征,实施能够以更高频率引发大的共波动的实验范式可能会消除长时间扫描和大量数据的需要,并产生更优的FC估计。

系统级组织从高幅度共振动结构中浮现。

我们的发现暗示了活动的瞬时波动与rsFC(静息态功能连接)组织之间的关键联系(31, 52)。许多研究发现,rsFC的社区结构类似于已知的共激活模式,包括任务诱发的活动(53, 54)。在这里,我们提出了一种策略,使我们能够分解出瞬时BOLD(血氧水平依赖)波动(及其拓扑)对rsFC的精确贡献。

我们证明了一种涉及默认模式和控制区域的特定活动模式主要负责驱动高幅度帧,进而驱动整个大脑的rsFC。虽然这种模式做出了最大的贡献,但很可能其他模式也做出了不可忽视的贡献。通过扩展定义以包括较低幅度的波动,我们期望找到与其他众所周知的大脑系统(16)相对应的活动模式。此外,我们推测,这些模式可能会因任务的复杂性和领域(53, 55)以及不同个体(47)而以不同比例重新组合。

我们注意到其他研究已经使用各种方法表明,时变和静态的rsFC彼此相关,而这种关系在很大程度上取决于高幅度网络状态。例如,参考文献18使用滑动窗口方法和基于种子的分析来识别高幅度活动的时间点,并展示了活动与增加的相关性(rsFC)的一致性。实际上,使用类似方法也报告了类似的结果(15, 17, 20, 36, 38, 42, 56–58)。这些研究的主要发现是高幅度活动与更强的FC或特定的脑系统表达有某种关系。尽管这些研究有一定的启示,但也存在一些局限性。特别是,它们描述了FC和高幅度状态之间的关系,但缺乏解释为什么存在这种关系的数学机制。在其他情况下,这些观察结果需要用户定义参数来确定什么构成高幅度活动,指定计算FC的种子体素或区域,或者滑动窗口的宽度。相反,我们的方法直接解决了这些限制。我们的第一个发现与上述论文一致,但是它是从静态FC的数学精确分解中得出的。通过这种分解,我们可以确定个体时间点如何组合形成时间平均的静态FC模式。这种重新组合不需要额外的参数化和滑动窗口,并且可以自然地比较所有成对连接(而不仅仅是种子)。总之,我们在这里提出的框架通过提供一个数学框架来明确地将瞬时的共振模式与静态FC联系起来,从而统一了这些先前的观察结果。

在未来的工作中,不同模式解释的方差比例以及与高幅度帧相关的其他统计量,包括它们发生的频率,可能成为认知和疾病状态的重要关联因素。因为高幅度帧似乎驱动了整体的rsFC配置,我们进一步推测它们的统计特征可能成为传统rsFC测量的重要补充。未来的工作。这里开发的方法为未来的研究提供了几个令人兴奋的机会。其中包括使用共振模式研究时变的FC,这些模式提供了对网络结构的逐帧估计,并规避了滑动窗口方法的局限性(7, 14, 59)。其他可能性包括将结构连接性与高幅度和低幅度帧期间的区域波动或区域间共振进行映射(60),以及基于从高幅度帧中提取的特征研究个体在认知、发展和疾病状态上的差异,我们表明这些特征提供了更可靠的主体水平网络估计。

关于塑造高幅度共振模式的神经生物学机制仍存在待解的问题。一方面,它们不经常发生可能反映了限制代谢资源消耗的动态策略(9, 61)。这个理论得到了之前的研究支持,这些研究表明代谢活动在默认模式网络内升高(62–64),而这个系统与我们发现的支撑高幅度帧的主导活动模式密切重叠。另一方面,高幅度帧在一定程度上是在相关的模块化系统中出现的数学必然性。例如,一组大脑区域形成相互关联的功能模块,那么根据定义,它们的活动(和共同活动)将遵循相似的时间进程,在时间上有一种共同波动的趋势。然而,高幅度共振模式在电影观看期间的同步现象表明它们也与某种潜在的心理过程(以及推测的神经生物学对应物)有关。未来的工作应更详细地研究高幅度共振模式的神经生物学基础。

重要的是,整个共振模式时间序列的研究还可以在多个重要方面进行扩展,包括将其应用于其他成像模态,例如电生理记录(65–68)或荧光成像数据(69, 70)。此外,可以很容易地在排除其他脑区活动效应后计算共振模式时间序列(24),或者研究脑区之间的时间依赖性和滞后关系(71, 72)。

最后,这里开发的方法将功能连接分解为其准确的逐帧贡献。我们推测,这种分解可能提供一种选择性的方法来解决扫描过程中的运动问题,例如通过基于边的方式识别和屏蔽受运动影响的时间点(73, 74)。

与现有方法的关系。我们注意到,共振模式时间序列的分析在概念上与一些现有方法(20, 36–38)类似,或者在某些情况下甚至是在共享的数学机制之上构建的(75)。例如,差分时间序列的逐元素乘积(MTDs)(76)使用节点对的差分活动时间序列计算元素级乘积。然后,这些时间序列与一个核函数进行卷积,生成平滑的时间变化的网络功能连接的估计。虽然相似,我们的方法依赖于未经转换的活动来估计边的时间序列,从而保留了静态网络功能连接与每个边的时间序列均值之间的关系。此外,我们的方法省略了平滑步骤,原则上能够检测到比MTDs更短时间尺度上的网络结构波动。另一个相关的方法是CAPs(15, 16),它提取和聚类高活动帧期间的体素或顶点级活动。由于一个体素在不同的上下文中可以是共活动的,聚类中心在空间上会彼此重叠。

虽然这些方法得出了类似的结论,但它们具有独特的优缺点,使得某些方法特别适合测试特定假设和研究问题。例如,MTDs和我们在这里介绍的共振模式时间序列分析适用于跟踪连接模式的时间变化。对于共振模式时间序列而言,它们在数学上与静态网络功能连接模式相关,因此我们的方法特别适合评估逐帧共振模式对整体网络功能连接的贡献(我们注意到,这种关系在现有文献中尚未被讨论)。而CAPs和基于创新的CAPs则更适合研究活动模式并跟踪其随时间的共同出现。原则上,未来的工作可以对这些方法进行系统和仔细的比较。

最后,我们指出我们的方法结合了CAPs和MTDs的元素。与MTDs和其他滑动窗口方法一样,我们的方法产生了一系列节点间的时间序列矩阵,每个矩阵编码了脑区之间的逐帧配对关系。对于滑动窗口方法,每个矩阵中的元素表示瞬时相关性的估计,这需要首先从有限的观测中估计方差(第二阶矩),尤其是当观测数量较小(窗口较窄)时,可能导致不准确和噪音较大的网络功能连接推断(14, 77)。相比之下,使用我们的方法生成的矩阵编码了瞬时共振模式的幅度,类似于CAPs。也就是说,每个元素表示两个脑区的活动瞬时偏转的幅度。重要的是,这些偏转是相对于使用整个扫描的所有观测估计的均值和方差计算的。因此,这里报告的时间变化的共振模式估计可能对噪声不太敏感,相比滑动窗口方法。

此外,需要注意的是,尽管我们的方法和CAPs在某些方面相似,例如它们都在单帧时间尺度上操作,但我们的方法仍然具有独特的优势和区别。最重要的是,我们的方法基于对静态rsFC进行数学精确的分解。这种分解使我们能够准确地量化单个时间点对静态rsFC的影响。在这里,我们利用这个特性来证明解释rsFC所需的帧数相对较少(这个发现在其他地方也有报道),展示共振模式在电影观看过程中变得同步,并且高振幅的共振模式可以增强主体的连接组指纹。其次,我们的方法是无参数的;这种分解不依赖于对高振幅活动的临界值的规定,也不需要预先选择种子区域或大脑系统。相反,我们的分解方法同时考虑了所有的活动水平和整个网络。正如前面提到的,我们预计这种方法在未来的时间变化FC研究中将有用,在生成更敏感和个体特异性的生物标志物方面具有潜力,并与非fMRI成像模式结合使用。

限制:

其中一个最关键的限制涉及计算和解释共振时间序列。计算边缘时间序列的过程始于对每个大脑区域的活动时间序列进行z标准化。然而,这个过程只在样本均值和标准差在时间上保持不变的情况下适用(78)。如果活动呈持续增加或减少的趋势,例如BLOCK任务的效应,那么z标准化过程可能导致有偏的均值和标准差,从而对活动波动的估计不准确。为了最小化这种情况的可能性,我们专注于静息状态和电影观看的数据,而不是BLOCK任务。在未来的工作中,可以通过采用常见的预处理步骤(例如构建任务回归器以消除任务对活动的一阶效应)来研究任务诱发的共振。

结论:

我们的研究揭示了大脑皮层活动与静息态功能连接之间的联系,以解释大脑系统级结构的统计机制,其中涉及间歇性、短暂的高振幅活动和共同活动。我们的方法框架可以轻松应用于其他成像数据集和记录模式,包括在神经元尺度上观察,从而以前所未有的时间分辨率研究神经共同活动。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值