静息态fMRI的当前方法和新方向

静息态功能连接磁共振成像(rsfcMRI)已经成为探究神经认知和精神行为疾病的核心工具。在过去二十年中,科学家们采用了多种方法和模型来解读大脑在静息状态下的脑活动波动数据。这些研究不仅丰富了我们对多种疾病状态变化的认识,而且随着大型数据集和数据共享项目的出现,静息态数据用于研究的量也在不断增加,因此,现在是一个关键时刻,我们需要重新审视已有的传统分析方法,并识别哪些研究方法需要适应或优化,以便更有效地处理rsfcMRI分析的复杂性和大规模数据。在本篇论文中,我们不仅回顾了现有的分析方法,还重点探讨了一些日益受到关注的新领域,包括动态rsfcMRI、独立向量分析、多频带rsfcMRI,以及网络中的网络分析。本文发表在Clinical Imaging杂志。(可添加微信号siyingyxf18983979082获取原文,另思影提供免费文献下载服务,如需要也可添加此微信号入群,原文也会在群里发布)

关键词:静息态功能磁共振成像、功能连接性、动态连接性、独立向量分析、大数据

      在功能磁共振成像(fMRI)中,大脑功能可以通过基于任务的范式来研究,这要求受试者执行认知任务,或者通过静息态来研究,在这种状态下,受试者被指导在没有任务或刺激的情况下让他们的思维自由漫游。静息态功能连接性最早在1995年被描述,当时Biswal等人观察到在休息状态下的受试者大脑中,不同空间区域的低频信号(0.01-0.1 Hz)在时间上是相关的。即使在纠正了心脏和呼吸噪音后,这些信号仍然具有显著性,这表明这些信号源于大脑在静息状态下的自发活动。

     目前,静息态功能连接性磁共振成像(rsfcMRI)广泛用于测量健康受试者和不同神经疾病患者在“任务负性”大脑中同步和自发激活的模式。本文提供了一个广泛的概览,介绍了在rsfcMRI中使用的传统分析方法,并讨论了该领域的最新发展以及未来研究的前景。

静息态网络 

      功能连接性已经成为一个强大的工具,用于定义几个可靠检测和一致复制的静息态大脑网络,无论是在个体还是在群体水平,都使用了各种各样的分析方法。这些网络包括基础感觉运动网络、语言网络、视觉网络、默认模式网络、突显网络、中央执行网络等。静息态功能连接性磁共振成像(rsfcMRI)为检查这些网络在健康功能和疾病状态下提供了一种新的方式,包括自闭症、精神分裂症[、神经退行性疾病和脑肿瘤。图1展示了使用独立成分分析常见识别的静息态网络。

图片

图1. 使用50名健康参与者的样本进行的群体级独立成分分析(ICA)识别的静息态网络。

(A) 舌回。 (B) 高级视觉网络。 (C) 右侧中央执行网络。 (D) 双侧岛叶网络。 (E) 前默认模式网络。 (F) 突显网络。 (G) 后默认模式网络。 (H) 左侧中央执行网络。 (I) 双侧中央前额回。 (J) 双侧颞回网络。 (K) 运动网络。 (L) 视觉网络。 (M) 背侧注意网络。 (N) 双侧前中央回。 (O) 基底节网络。

2.常规的静息态功能连接磁共振成像(rsfcMRI)分析方法 

      在分析数据之前,通常会执行几个预处理步骤,包括校正部分依赖的时间偏移、回归头部运动和其他干扰回归量、空间平滑和带通滤波以保留0.01至0.1 Hz的频率。然后,图像要么被配准到个体主题的结构空间,要么被配准到标准空间以允许受试者之间的空间一致性。预处理之后,可以使用几种不同的方法来分析静息态数据,其中一些依赖于感兴趣区域(ROI)的先验识别,而其他则是数据驱动和无模型的,如下文所述。

2.1. 频域分析 

       一个体素的时间序列的低频波动幅度(ALFF)是低频范围(0.01–0.1 Hz)内的总功率。具体来说,每个体素的时间序列被转换到频域,然后获得功率谱。在功率谱的每个频率上计算平方根,并在每个体素的0.01–0.1 Hz频率范围内获得平均平方根。然后,每个体素的这个ALFF被除以大脑掩模内个体的ALFF全局平均值。结果的ALFF值被认为反映了自发的区域神经活动,但可能会受到来自呼吸、心脏活动和运动的非神经生理波动的污染。为了改进原始的ALFF方法,引入了一种修改后的度量,称为分数ALFF(fALFF),它检查低频范围内每个频率的功率与整个频率范围的功率之间的比率。ALFF和fALFF都用于研究感觉运动任务、ADHD、阿尔茨海默病、强迫症、双相障碍、精神分裂症和精神病中的区域激活变化。尽管这两种度量都是相关的,但它们并不完全相同:灰质区域中ALFF的可靠性优于fALFF,而且它对组和个体之间的差异更敏感。然而,ALFF更可能受到生理来源的噪声的影响。因此,建议在检查这些频域参数的论文中评估和报告这两种度量(ALFF,fALFF)

2.2. 区域同质性分析 

       区域同质性(ReHo)是一种基于体素的大脑活动度量,它使用肯德尔一致性系数来评估给定体素的时间序列与其最近邻体素之间的同步性。ReHo不需要预先定义感兴趣的区域(ROI),并且具有很高的测试-重测可靠性。ReHo通常在0.01至0.1 Hz的频率范围内计算,并可以细分为不同的频率带。此外,尽管有几项研究证明了ReHo在不同神经系统疾病中的频率依赖性变化,但这些不同频率带内ReHo的确切生物学意义仍然不明确,限制了其在研究和临床领域的应用。然而,与ALFF一样,ReHo方法用于识别大脑的局部神经活动,并有时用于定义种子连接分析的感兴趣区域(ROI)。

2.3. 基于种子的连接性分析 

        最早形式的rsfcMRI分析是由Biswal等人使用的基于种子的方法,用于识别感觉运动网络。基于种子的分析是一种基于模型的方法,依赖于定义特定的ROI或一组ROI,并将该区域的BOLD fMRI时间序列与所有其他区域的时间序列进行相关,从而得到一个功能连接图。种子可以基于先验知识选择,或者可以基于基于任务的激活进行隔离。由于该方法易于解释和其测试-重测可靠性,基于种子的连接性分析在众多研究中得到了应用。然而,尽管基于种子的分析产生更精确的测量结果,但它只能捕捉到与定义的ROI的共激活。因此,它可以提供更细致的细节,但非常依赖于用户/定义,并且不能用于分析大量的节点。图2展示了使用左侧Brodmann区域44(BA44)作为语言网络和左侧前中央回作为运动网络的种子区域进行的基于种子的功能连接性分析。

图片

图 2. 代表性患者(右侧胶质母细胞瘤)的基于种子的相关性和ICA图。

L-BA44种子和L-PCG种子图代表基于种子的相关图,而ICA-Lang RSN和ICA-Motor RSN代表为同一受试者识别的独立成分图。

L-BA44:左侧Brodmann区域44。L-PCG:左侧前中央回。

2.4. 独立成分分析

      应用于rsfcMRI的最受欢迎的无模型方法之一是独立成分分析(ICA)。与其他无模型方法一样,ICA分析大脑所有体素的信号。这与更有限的基于种子的方法不同,在该方法中,所有体素的相关性仅针对一个种子ROI进行计算。ICA的核心假设是,每个体素的信号输出由许多不同的激活和噪声来源组成,通过观察大脑各区域的BOLD信号之间的相似性,可以将不同的信号来源(无论是神经元的还是伪迹)分开。ICA程序根据其体素激活时间序列之间的相似程度,将大脑的区域分组为用户指定数量的组或“组分”。ICA之所以有用,是因为它是数据驱动的,不依赖于用户选择的先验ROI。ICA的另一个优点是,与仅提取特定于ROI的网络的基于种子的分析不同,ICA同时提取受试者内的所有网络。然而,ICA程序可能在计算上要求很高,并且可能产生难以解释的结果,因为用户必须根据先验理解来辨别哪些组分代表噪声信号,哪些代表真正的神经元激活图2展示了通过ICA分析和基于种子的分析获得的语言和运动网络,证明了在脑瘤患者中,基于种子和ICA方法产生相似的结果。

2.5. 聚类分析

      聚类分析是一种额外的方法,通过时间序列中的相似性将体素分组在一起。尽管它也是数据驱动的,但它与ICA不同,因为它直接通过它们的相似性将体素分组在一起,而不需要用户依赖的组分过滤。已经显示,ICA、基于种子和聚类方法产生一致的结果。

2.6. 图论 

      用于网络科学的图论的跨学科方法已经成为研究功能连接性的相关内容。使用图论方法,大脑的网络用节点(感兴趣的区域)和边(这些感兴趣的区域之间的连接)进行建模。通过检查这个图的度量,例如节点之间的平均距离、边和节点的数量,以及它们在空间中是如何排列的,我们可以计算出描述这些网络的网络参数,例如全局和局部效率、节点度、中心性和模块性。图论方法不仅允许检查专门网络内的连接(分离),还允许检查这些网络和节点是如何相互作用或重叠的(整合)。应用于rsfcMRI的图论方法集中在构建功能连接组的概念上,这是一个包含大脑各区域之间所有可能配对连接的矩阵。连接组的概念最初是用来指代大脑的解剖连接,但后来已经更广泛地应用于功能连接性。

      几个关于静息态功能网络的网络特性是已知的。首先,大脑网络具有小世界架构,其特点是节点之间的路径长度短,节点之间的聚类系数高。其次,大脑网络也可以被描述为无标度的,这意味着尽管每个节点处的连接数的平均值较低,但由于网络中有少数几个具有非常高连接数的中心节点,仍然存在高度的全局连接性。无标度网络倾向于对随机攻击具有韧性,这是由于许多非关键节点的稳健性,但是对针对中心节点的有针对性的攻击(如连接性疾病)是脆弱的。图3展示了静息态fMRI数据的图论分析的代表性流程图。

图片

图3. 静息态fMRI数据的图论分析的代表性流程图。

(A) 大脑区域覆盖在玻璃脑表面上。

(B) 功能连接矩阵,表示大脑区域的BOLD fMRI时间序列之间的皮尔逊相关性。

(C) 从连接矩阵中派生出的大脑网络的网络表示,其中圆圈代表节点,线代表边,显示大脑区域之间存在显著的功能连接。

      图论分析的挑战可能出现在节点定义不佳,以及图论模型中派生出的节点与受试者的真实大脑区域不匹配的情况。这可能导致数据生物学意义的解释受限。此外,由于图论通过全局网络度量(如效率和小世界性)来总结网络,这些总结指标的变化可能实际上并不反映节点的变化,而是混杂因素。

     一些研究还应用了图论方法来研究使用扩散张量成像(DTI)派生出的白质束。与静息态图论方法相似,这些结果也识别出了大脑的小世界架构。然而,很少有研究客观地比较了通过静息态fMRI派生出的大脑功能架构和通过扩散张量成像研究派生出的结构架构。这些方法的一个局限性与感兴趣区域之间缺乏结构性白质连接有关,尽管功能上这些区域可能仍然是相关的。

3.新的静息态fMRI分析方法 

3.1. 动态静息态fMRI 

      最近,研究已经开始探讨动态或非稳态的静息态fMRI,这是一种关注网络连接在短时间内(通常在10秒到2分钟的范围内)变化的方法。先前的文献提出,动态静息态fMRI可以用来检测传统静息态fMRI分析中不明显的组间差异和神经代谢变化。动态静息态fMRI通过计算fMRI信号在多个时间间隔内的时空相关性的变化,而不是在整个BOLD fMRI时间序列上进行评估。在功能连接中观察到的动态波动可能是一种生理过程,用于平衡有效的信息处理并最小化大脑的代谢需求,而最具动态性的连接是那些在空间上相距遥远和跨模块的连接。

     定义时间序列间隔的方法有几种。其中许多都是标准滑动窗口方法的变体,这是目前主流的动态静息态fMRI方法。滑动窗口方法相对简单:使用静息态时间序列的一个子集来计算相关矩阵,并且随着窗口起点在时间序列中逐渐下移,这一计算会被反复进行,窗口的长度和窗口之间所需的重叠量由用户定义。图4提供了一个改编和修改自Valsasina等人的滑动窗口分析方法的示意表示。滑动窗口方法的局限性主要涉及用户对窗口形状和大小的决定;时间段过大可能导致动态静息态fMRI接近传统静息态fMRI,而窗口过短可能引入偶然波动。因此,建议窗口大小在30秒到60秒之间,以准确捕捉动态静息态fMRI,还有其他方法被探索用以克服用户驱动过程的局限性,例如数据驱动的自适应窗口和时频分析。动态静息态fMRI研究的另一个局限性是噪声可能被解释为动态波动。

图片

图4. 滑动窗口分析的示意图,这是评估时间变化功能连接中最受欢迎的方法。

      尽管目前在动态静息态fMRI的使用和解释方面存在挑战,但这一范式已被证明能够解释更多的行为测量变异,如工作记忆、面部表情处理和持续注意力。测试动态静息态fMRI可以更好地了解可能潜在于许多涉及不稳定或过度稳定状态的临床病症的动态变化。动态静息态fMRI已被用于研究多种疾病状态下的RSFC,包括多发性硬化症、神经退行性疾病、双极性疾病、重度抑郁症、精神分裂症、创伤后应激障碍和中风。还有迹象表明,动态静息态fMRI可以检测到在几小时或几个月的时间范围内发生的变化,而这些长期变化可能反映了学习或基因表达的变化。

3.2. 独立向量分析

      另一种新兴的数据驱动的静息态fMRI方法是独立向量分析(IVA),该方法是在ICA(独立成分分析)的基础上发展起来的。IVA与ICA在盲源分离方法上相似,但被提出作为一种解决ICA输出中排列模糊性的方法。与ICA一样,IVA假设同一fMRI数据集中每个源向量的元素与其他源向量的元素是独立的,但它不同之处在于,它假设在不同的fMRI数据集中相似的源向量之间存在更高的依赖性。在定义IVA方法论的论文中,Kim等人首先表明,通过定义一个多变量评分函数,而不是像ICA中使用的单变量评分函数,IVA分析提供了与ICA中源信号元素的混乱相比,更有序的源向量输出。IVA方法在群体级静息态fMRI分析中可以改善真实信号源元素的隔离,并通过消除在ICA中需要从每个源信号中手动选择成分的需求,提高了用户独立性。此外,应用于群体级静息态fMRI分析的IVA算法可以产生空间上相似的激活图,这些图可以与由于基于一般线性模型的方法而产生的群体级分析图相关联。IVA还被证明更擅长于检测空间波动。最近,Ma等人使用IVA研究了存在于健康对照组和精神分裂症患者中的静息态网络对之间的群体级动态空间波动[84]。IVA的发现与之前关于精神分裂症患者的研究相似,发现最多的空间波动出现在前额顶叶、小脑和颞区。它还发现精神分裂症患者表现出更多的动态连接波动,这表明他们以更无组织的方式招募大脑的功能区域。IVA的实用实现可通过群体ICA工具箱(GIFT, http://mialab.mrn.org/software)获得;然而,大量的计算时间和解释挑战已经限制了IVA在更广泛的临床人群中的应用。

3.3. 多频带静息态fMRI 

      直到最近,大多数静息态fMRI研究都集中在BOLD fMRI波动的低频范围(0.01-0.1 Hz)内,主要是因为Biswal等人[1]在这一低频范围内观察到了显著更高的功率。此外,由于全脑BOLD fMRI数据的时间采样限制,大多数fMRI研究使用了每2秒收集一次的静息态fMRI数据,这限制了对BOLD信号低频范围的研究。然而,最近在数据获取技术方面的进步使得研究人员能够同时从多个大脑切片中收集BOLD fMRI数据,从而实现了更快的大脑扫描序列。通过实施这种被称为多频带成像技术的方法,现在可以以亚秒级的时间分辨率获取全脑fMRI。

       这一进展不仅显著提高了时间分辨率,还增强了在高频带内研究静息态功能连接性的能力,并改善了对心脏和呼吸噪声的特征描述。利用这些多频带成像数据,研究人员已经证明,在高于0.1 Hz的BOLD信号频率中也存在静息态功能连接性。有研究通过使用更快的多频带成像序列,将采样时间缩短到仅333毫秒,从而将可研究的BOLD fMRI信号频率的上限推高到高达1.5 Hz。

       最近的研究已经利用这些频率特定的静息态测量来量化各种临床人群中的功能性大脑障碍,包括癫痫、精神病、注意力缺陷多动障碍(ADHD)、运动障碍和脑肿瘤。尽管存在与高频静息态数据相关的一些挑战,如干扰回归技术的影响和头部运动的影响,多频带静息态fMRI分析仍代表了一种创新的方法,用于量化功能性大脑障碍。

4.未来方向

4.1. 网络中的网络 

       一个新兴的图论方法是将大脑模型化为一个“网络中的网络”(NoN)。在2017年,Morone及其同事描述了一个由大脑内功能专一的子网络定义的稳健、模块化的NoN模式。他们研究了一个包含15个视觉-听觉任务范式的实验,并创建了一个神经网络地图。这个地图识别了他们标记为“神经集体影响者”(NCI)的关键节点。Morone将NCIs定义为能够为网络提供全局连通性的最小节点集合。在视觉-听觉任务中,被识别的NCIs包括前扣带皮层、后顶叶皮层和后枕叶皮层。

      为了模拟网络对疾病的稳健性,移除了神经影响者,并通过计算“巨大组件G”(即网络中最大的相互连接的活跃组件)来重新评估全局效率。在模块化的NoN网络模型中,不是所有被激活的节点都参与了巨大组件G,这些节点有能力独立于G进行激活。这表明模块化的NoN对于损伤的连锁效应(类似于电网的灾难性效应)具有稳健性。这个NoN范式在帮助进一步阐明大脑中的关键影响和调节区域以及理解大脑对损伤的反应方面具有前景,并应该扩展到静息态研究中。

4.2. 大数据分析

      理解人类连接组被认为是研究的一个重要新领域。2010年,美国国立卫生研究院(NIH)建立了人类连接组项目(HCP),以绘制大脑功能网络的全面地图并改进当前的MRI采集技术。由华盛顿大学、明尼苏达大学和牛津大学(WU-Minn联盟)领导的一个团队正在收集超过1000名受试者的扫描数据,这些数据在humanconnectome.org上公开提供。这为静息态功能连接磁共振成像(rsfcMRI)数据提供了大量的数据库,有助于阐明静息态大脑网络的行为和功能,以及许多可能影响这些网络功能的因素(如基因、年龄、环境因素)。与此同时,1000个功能连接组项目(FCP)于2009年启动,以促进静息态数据共享,在其中发布了超过1200个rsfcMRI数据集,包括许多来自多个受试者群体和病理状态的异质数据集,这一项目后来由国际神经影像数据共享计划(INDI)接替。

      传统上,fMRI分析涉及繁琐的预处理流程,以减少噪声并规范成像数据。随着数据共享计划中大数据集在研究中变得越来越普遍,需要新的处理方法来简化rsfcMRI分析并规范输出。大数据在rsfcMRI中的几个核心挑战涉及高性能计算需求、充分的数据共享基础设施和处理流程的标准化。目前,尚无共识存在于最佳预处理步骤的顺序或利用方式。此外,当检查大型数据集时,常见的噪声变异可能会被放大,从而增加将虚假信号解释为真实激活的风险。提出的解决方案包括最小化预处理步骤,对预处理方法和结果进行系统性审查,以及采用更适合大型fMRI数据的软件包。Makkie等人最近还审查了Apache Spark和Hadoop的fMRI应用,这两者都是具有大数据处理能力的开源软件套件。随着大数据集继续成为神经科学研究中不可或缺的资源,fMRI大数据处理的标准化是一个重要的工作领域,这将允许更有效地探索可能解释常见行为和病理状态的潜在静息态网络。

4.3. 超高场强下的RsfcMRI 

      虽然早期的静息态数据是使用3特斯拉(3 T)扫描获取的,但最近美国食品和药物管理局(FDA)批准了下一代超高场7特斯拉(7 T)MRI磁体用于临床应用。使用新一代7 T磁体进行超高场扫描相对于更传统的3 T成像的主要优点是更高的功能对比度噪声比,从而提高了空间分辨率。7 T扫描还降低了时间序列的信噪比,并对BOLD信号中的时间相关性更为敏感,这可以捕捉到以前未被识别的功能网络中的节点[103]。在7 T扫描上已经观察到了在3 T扫描中不明显的静息态连接,特别是涉及1到1.5毫米之间的短体素长度。超高场扫描的潜在缺点包括对运动和噪声伪像的增加敏感性,以及更长的扫描时间。已经提出了不同的方法来纠正噪声,包括例如用于3 T扫描的自回归统计方法,该方法已经被扩展并建议用于超高场成像。尽管许多学术机构主要在研究环境中使用了7 T的超高场扫描,但在不同临床队列中比较7 T和3 T功能MRI的系统性研究仍然很少,且是必要的。

结论 

      静息态fMRI已经导致了对影响人类如何互动、感知和处理环境和内部刺激的关键大脑网络的识别。虽然广泛使用的rsfcMRI处理技术仍然是讨论和完善的主题,但来自网络科学领域的跨学科方法可能有助于进一步回答有关这些大脑网络的动态、稳健性和相互作用的问题。由于fMRI数据收集和分析的要求性质,参与跨学科研究并实施大规模数据共享计划是至关重要的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值