使用静息态脑网络以及结构像海马亚区和杏仁核体积进行阿尔茨海默症诊断

对阿尔茨海默症(AD)的初期进行准确诊断是至关重要的。本研究的目的是通过结合结构性磁共振成像(sMRI)和静息态功能磁共振成像(rs-fMRI)来使用有效的生物标志物进行AD的诊断分析和分类。到目前为止,已经发现了几种用于AD诊断的解剖学MRI成像标志物。使用皮层和皮质下体积、海马和杏仁核体积以及遗传模式已被证明有助于区分AD患者和健康人群。fMRI时间序列数据具有特定的数值信息以及动态时间信息的潜力。体素和图论分析已经变得流行,用于分析神经退行性疾病,如阿尔茨海默症及其早期阶段,轻度认知障碍(MCI)。到目前为止,这些方法已经分别用于AD的诊断。在最近的研究中,将MCI病例分类为在一定时期内不转化为稳定MCI(MCIs)和转化为AD的MCIc的情况,报道较少,结果不一致。在这项研究中,我们验证并验证了一种拟议的诊断框架的有效性,通过利用从sMRI获得的有效生物标志物,以及静息状态下频率范围为0.01-0.027的功能性脑网络和基于体素的特征来识别AD并区分MCIs和MCIc。后者主要包括默认模式网络(低频振幅[ALFF]、分数ALFF [ALFF]和区域同质性[ReHo])、度中心性(DC)和突显网络(SN)。皮尔逊相关系数用于测量fMRI功能网络,已被证明是疾病诊断的有效手段。我们应用图论来计算节点特征(节点度[ND]、节点路径长度[NL]和介数中心性[BC])作为图形特征,并分析不同脑区之间的连通性。我们提取三维(3D)模式来计算区域一致性,然后执行单变量统计t检验以访问保留显示显著变化的体素的3D掩模。同样,从sMRI中,我们使用Freesurfer(版本6)计算海马亚区和杏仁核体积。最后,我们实施并比较了不同的特征选择算法,以整合结构特征、脑网络和体素特征,以优化使用支持向量机(SVM)分类器对AD进行诊断鉴定。我们还比较了SVM与随机森林(RF)分类器的性能。所得结果证明了我们的框架的有效性,其中,海马亚区、杏仁核体积和具有多种rs-fMRI测量的脑网络的组合可以显著提高其他方法在诊断AD方面的准确性。所提出的方法报告了二元分类的准确性。更重要的是,不常报告的MCIs(stable MCI)与MCIc(converted MCI)的分类结果得到了显著改善。然而,这项研究仅涉及AD神经影像学倡议(ADNI)队列,重点是通过整合sMRI和fMRI来关注AD进展的诊断。因此,该研究的主要缺点是样本量小。在这种情况下,我们使用的数据集没有完全反映整个人口。因此,我们不能保证我们的发现适用于其他人群。本文发表在Frontiers in Aging Neuroscience杂志。

引言

随着年龄相关的精神衰退的增加和流行,研究人员对研究病理性和正常衰老越来越感兴趣,试图找到神经性疾病的早期标志。实际上,由于进行性疾病对国家医疗保健系统的高额费用和药物负担,针对及时和差异性评估这些疾病的研究是至关重要的。阿尔茨海默症(AD)是世界上最常见的神经退行性疾病,影响着数百万人(2020年阿尔茨海默症事实和数据,2020)。准确识别早期AD进展的精确生物标志物将帮助研究人员和医生开发新药,并监测其有效性,同时减少临床检查的时间和费用。上世纪80年代,国家神经病学和通讯疾病研究所以及阿尔茨海默症和相关疾病协会(NINCDS-ADRDA)根据二元法制定了AD的临床诊断指南。该方法提到了认知衰退在AD检测中的重要性(McKhann等人,1984)。后来,以神经纤维缠结和老年斑块(Hyman和Trojanowski,1997)的形式引入了神经病理学证据。2011年,国家衰老研究所-阿尔茨海默症协会小组增强了AD的诊断规定。通过测量脑脊液(CSF)、神经遗传方法、tau蛋白、淀粉样蛋白和通过神经影像学分析(包括MRI、正电子发射断层扫描(PET)和功能MRI(fMRI))评估的神经损伤特征,可以获得额外的特征。使用生物标志物,如Mini-Mental State Examination(MMSE)评分、MRI生物标志物(如标准化全脑体积和海马体积)和CSF生物标志物(淀粉样蛋白-42,tau蛋白)以及联合代谢紊乱,来检测AD和预测轻度认知障碍(MCI)的转化显示出有前途的未来(van Maurik等人,2017)。MRI和PET成像的变化允许确定萎缩区域和淀粉样/淀粉样蛋白/代谢指标(Zhang等人,2011; Garali等人,2018),从而即使在早期阶段也能检测到AD(Jack等人,2019)。

由于MRI的非侵入性质,已经投入了大量工作来改进MRI处理方案,以发现可能用于提高阿尔茨海默症诊断效率的与MRI相关的标志物。有大量证据表明,病理过程的不同阶段,不同的解剖学脑区受损,而杏仁核、海马和内嗅皮质是首先受影响的。尽管这些区域对AD负有责任,但它们尚未得到彻底研究。海马亚区被广泛认为在短期到长期记忆吸收过程中起着关键作用。海马区更可能是大脑首先退化的部分。此外,临床研究已经显示,海马区是检测从MCI到AD的转变最常用和有效的生物标志物之一(Platero等人,2019;Liu等人,2020)。尽管如此,由于MRI的分辨率较低,它通常被视为一个单一实体。随着高分辨率MRI图像数据采集技术的重大进步,研究特定海马亚区的新可能性已经出现。研究发现,CA1体积测量比总海马体积测量更敏感,可用于检测AD早期的结构变化(Zheng等人,2018)。海马亚区还与年龄相关的记忆丧失和记忆模式的某些特征有关(Zheng等人,2018)。因此,早期识别AD或其前驱阶段MCI(Petersen,2004)对于一致和有效的诊断至关重要,这有助于减缓疾病的进程。作为阿尔茨海默症的中间阶段,MCI的个体通常表现为在正常衰老过程中认知和功能下降,并受到记忆下降的影响,而没有疾病(Petersen,2004;Angelucci等人,2010),这通常表现为各种脑区认知的整体下降。MCI被视为早期AD(Petersen,2004)。MCI的个体随后会发展成阿尔茨海默症,在平均2-3年的时间内出现症状(Lopez等人,2012)。在老年人中进行的一项社区支持分析表明,MCI从阿尔茨海默症过渡到各种形式的痴呆的转换率每年约为10-15%(Wei等人,2016 )。以前的研究建议,一些人可能无法转变为阿尔茨海默症,并且在临床上保持稳定状态很长时间,这被认为是稳定的MCI(MCIs),而转变为AD的MCI则被称为MCIc。来自阿尔茨海默症分析的以前的研究支持这样的假设,即阿尔茨海默症通常以神经元模式的功能断开和不同脑区的功能连接性(FC)为特征,这也显示在MCI的初始阶段,甚至在转变为阿尔茨海默症之前(Bishop等人,2010;Clem等人,2017;de Vos等人,2018)。

通过使用例如PET、静息状态功能性磁共振成像(rs-fMRI)和结构性磁共振成像(sMRI)等不同的成像技术获得的生物标志物,已显示出在MCI和AD诊断中具有益处(Ju等人,2019年)。特别是,fMRI技术提供了一个广泛的分析平台,通过计算静息状态下多个大脑区域的固有血氧水平依赖性(BOLD)频率变化之间的相关性,来量化大脑的功能模式。由于对不同大脑区域的自发神经活动敏感,因此可以将BOLD信号用作分析整个大脑水平上的神经疾病的有效非侵入性生物标志物。FC展示了BOLD频率在不同大脑区域之间的时间相互作用,可以揭示结构上是分离的但功能上相关的大脑区域是如何进行交流的。因此,使用fMRI图像进行功能网络研究将为自动化疾病诊断提供巨大的潜力。大量的文献已经分析了AD在rs-fMRI上引起的功能网络变化(Hojjati等人,2017年;Zhang等人,2019年)。rs-fMRI为病理识别提供了深入了解动态成像模式的FC,不仅适用于患有阿尔茨海默症的个体,还适用于患有其他神经精神疾病或神经系统疾病的个体(Greicius,2008年)。先前的研究证据表明,在静息状态下的功能连接显示出工作相关知识的连接关系(Ito et al., 2017),这些功能网络已被证明是阿尔茨海默病的高度有价值和敏感标志物(Sheline et al., 2010)。Grieder等人(2018)指出,阿尔茨海默病患者认知能力的损失与脑网络复杂性模式直接相关。在先前的功能磁共振成像(fMRI)研究中,功能连接(FC)被报道为指示健康认知、阿尔茨海默病和轻度认知障碍老年人之间相关认知损伤的指标(Lin et al., 2018)。

一些fMRI分析还表明,阿尔茨海默症的病理生理学与区域自发低频BOLD变化一致性估计的统计学改变相关,在静息状态下。对于体素逐点分析,这些研究中使用的指标包括局部一致性(ReHo)(Zang等人,2004年;He等人,2007年);低频振幅(ALFF)(Zou等人,2008年;Li等人,2017年),以及分数ALFF(fALFF)。这些研究表明,与认知正常的个体相比,患有阿尔茨海默症的个体在后扣带皮层(PCC)和楔前叶(PCu)中有更大的ReHo异常(p < 0.05)。基于fMRI图像的fALFF和ALFF分析(Han等人,2011年)表明,MCI患者的大脑区域(包括颞皮层和枕叶)的fALFF值降低。rs-fMRI的FC(Li等人,2017年)表明,具有主要FC的大脑区域在默认模式网络(DMN)区域(Hafkemeijer等人,2012年;Zhang等人,2020年)中高度呈现,并主要影响PCC和双侧PCu(Dai等人,2015年)。使用静息状态功能连接方法(量化大脑区域之间的时间同步)发现,AD和aMCI都针对大规模网络,包括减少的DMN连接和增加的突显网络(SN)连接(Greicius等人,2004年;Zhou等人,2010年;Zhou和Seeley,2014年),以及AD的网络间异常连接和aMCI的连接紊乱,特别是与DMN有关(Lee等人,2016年;Yang等人,2017年;Zhang等人,2017年)。这些对于簇级比较都是统计上重要的发现。然而,将上述生物标志物的分类潜力确定为MCI/AD个体进入某一类别(MCI/AD与健康对照[HC]),是一项非常复杂的工作(Rathore等人,2017年)。最近,另一项分析建议,使用rs-fMRI从功能网络评估和机器学习技术中检索的生物标志物提供了一个有效的框架,用于准确和高效的识别。Chen等人(2011年)使用大规模网络(LSN)技术,曲线下面积(AUC)为95%,将患者分类为记忆缺失型MCI(aMCI)和认知健康。Challis等人(2015年)使用SVM提出了GP-LR技术,并获得了75%的准确度,用于诊断健康个体与aMCI。Khazaee等人(2015年)使用线性SVM作为分类器,利用大脑网络的时间序列来识别患病个体,他们的实验结果在分类上达到了100%的准确度。这可能是由于样本数量有限,以及他们使用的是单变量Fischer评分法的特征降维技术。在另一项研究中,他们使用了从动态连接网络(DCNs)获得的空间和时间变化的特征。最后,他们将其组合为一个特征,以评估多核技术,并与流形正则化多任务特征学习一起使用,用于识别EMCI和LMCI,获得了78.8%的准确度(Jie等人,2018年)。已经证明,使用rs-fMRI的功能图论测量和机器学习技术可以精确识别MCI患者、阿尔茨海默症患者和健康对照组个体(Xiang等人,2013年)。

然而,大量的文献将MCI的亚型MCIs和MCIc归为一个单一的MCI组(He等人,2008年;Khazaee等人,2015年),很少有文献分析了rs-fMRI在识别这两个组之间差异方面的潜力(Khazaee等人,2015年)。此外,Zuo等人(2010年)将BOLD频率分为五个频率带。在这些频率带中,患有AD和MCI的个体在海马、内侧前额和后扣带区域的大脑功能显著不同。基于这个框架,我们的目标是通过使用从sMRI和静息状态下的功能性大脑网络获得的生物标志物,评估诊断分类的潜力以区分MCIs和MCIc以及其他组。根据分类结果,为了发现高度敏感的生物标志物,我们可以准确地识别大脑中为何敏感的生物标志物会随着疾病的进展而改变。我们假设,通过为个体在疾病进展的不同阶段提供认知训练和适当的治疗,可以防止阿尔茨海默症转化的发展。值得注意的是,上述大部分rs-fMRI技术仅使用时间序列网络来比较不同的组。然而,仅使用rs-fMRI模态获得的特征向量的时间序列可能不够精确地呈现整个大脑的时空模式(He等人,2008年)。

在海马和杏仁核的体积变化被认为是AD的主要特征,并被用作诊断指标。在阿尔茨海默症患者中,海马和杏仁核的萎缩通常扩散到大脑的其他部分(Josephs等人,2017年;Feng等人,2018年)。解剖学磁共振成像可以用来可视化海马、杏仁核、皮层和皮质下萎缩的模式。这在AD的临床诊断中很重要(Feng等人,2018年)。因此,这个框架的基本目的是通过结合sMRI的海马亚体积、杏仁核体积、大脑网络和rs-fMRI的多测量基于体素的特征,充分分析sMRI和rs-fMRI数据以识别AD。首先,使用Freesurfer(版本6)进行皮层和皮质下分割,然后使用Freesurfer的segmentHA_T1.sh功能进行海马亚区和杏仁核体积分割(Fischl,2012年)。其次,我们将信号处理到静息状态下的0.01-0.027 Hz频率带。然后,我们通过评估整个大脑区域的时间序列之间的皮尔逊相关系数来创建大脑网络。之后,我们执行阈值操作以获得二进制无向大脑网络。随后,我们获得了图论元素,如全局效率、局部效率、特征路径长度、聚类系数和小世界属性,以计算功能性大脑网络的参数。同样,我们为每个患者获得了三维(3D)区域相干性(fALFF, ALFF, ReHo和DC)的图。之后,我们对训练类别之间的整个3D大脑区域执行单变量统计双样本t检验,以获得一个分析掩模,该掩模保留了显著差异的原始基于体素的特征集,即fALFF, ReHo, FALFF和DC中的任何一个体素测量。在这项研究中,我们还分别应用了大脑网络和体素特征,最后我们将sMRI和rs-fMRI特征结合起来。在特征选择阶段,我们实施并分析了三种不同的特征选择技术,以获得最优特征。为了获得无偏的分类性能,我们使用交叉验证(CV)方法实施支持向量机(SVM)作为分类器。更重要的是,我们还使用随机森林(RF)分类器的集成学习方法比较了我们的模型的性能。

材料和方法

参与者

本文所使用的数据来自AD神经影像学倡议(ADNI)数据库。ADNI于2003年作为一个公私合作伙伴关系启动,由首席调查员Michael W. Weiner博士领导。ADNI的主要目标一直是测试是否可以将连续的MRI、PET、其他生物标志物以及临床和神经心理评估相结合,来测量MCI和早期AD的进展。对受试者的单独纳入标准在ADNI的操作中有提及。被纳入的个体年龄在53至93岁之间。所有个体都有能力并愿意忍受所有测试程序,包括神经影像学,并参与纵向研究。评估中没有包括精神活性治疗。在此框架中,我们获取了ADNI网页上所有可用个体的数据。总共有213个个体被纳入,分为AD(n = 63)、MCIs(n = 37)、MCIc(n = 45)或HC(n = 68),并根据年龄和性别比例进行匹配。通过功能活动问卷(FAQ)记录(0至4)、Mini-Mental State Examination(MMSE)记录(26-30)和老年抑郁量表(GDS)记录(0至4)对群组类别进行排序。对于MCI病例,FAQ记录为0-16,MMSE记录为24-30,GDS记录为0-13。对于MCIc病例,FAQ记录为0-18,MMSE记录为18-30,GDS记录为0-10。

对于AD病例,个体的全球CDR(Clinical Dementia Rating)评分为1,FAQ评分为3-28,MMSE评分为14-24,GDS评分为0-7。跟踪时间不足18个月且没有转化的MCI个体未被纳入本研究。表1展示了参与研究的个体的人口统计报告,包括每个类别的性别比例和平均年龄。通过学生t检验(显著性水平为0.05)评估这些类别之间的临床和人口统计特征在统计学上的显著差异。我们没有发现性别比例或年龄方面的显著变化(p > 0.05)。为了公正地评估性能,群组分类被随机打乱并分成k个子组。对于模型评估训练,训练数据集,并在独立测试集上测量分类性能,包括诊断敏感性、特异性、F1分数和Cohen's Kappa指数。在分割过程中保留了性别和年龄分布。

表1 | 参与者的神经心理学和人口统计学特征。

数值表示均值或数量 ± 标准差。MMSE, 简易精神状态检查; NPI-Q, 神经精神病学库存问卷; FAQ, 功能活动问卷; GDS, 老年抑郁量表。

结构性MRI预处理

我们从ADNI网站获取了1.5-T T1加权磁共振图像。使用Philips、GE或Siemens医疗系统扫描仪从数据中心收集MRI扫描。由于每个扫描仪的采集方法不同,ADNI执行了图像标准化步骤。图像校正包括校准、由于梯度非线性而引起的图像几何失真(grad-warp)、由于波动导致的强度不均匀性的降低,或由ADNI使用的1.5-T扫描的剩余强度不均匀性的降低。在ADNI网站上,我们可以获得更多关于sMRI的信息。所有扫描的分辨率为176×256×256,间隔为1毫米。在我们的实验中,我们使用Freesurfer(版本6)(Fischl,2012)工具箱来预处理收集到的sMRI图像。

静息态功能性MRI图像采集

使用3T的Philips Medical sMRI扫描仪获取fMR图像。通过ADNI网站获取rs-fMR图像。在图像采集时,要求患者不要思考,躺在扫描仪中,并放松。参数序列如下:TR = 3,000毫秒,plus序列 = GR,翻转角度 = 800°,TE = 30毫秒,数据矩阵 = 64 × 64,切片厚度 = 3.33毫米,像素间距X = 3.31毫米和Y = 3.31毫米,轴向切片 = 48,时间点 = 140,无切片间隙。

静息态功能性MRI预处理

图像处理过程使用了Resting-State fMRI数据处理助手(DPARSF)(Yan和Zang, 2010),其中包含了统计参数映射(SPM)和静息态fMRI数据分析工具包(REST)。为了稳定和适应个体,参与者的前10个时间点被移除,然后对最后一个时间点进行了时间校正。为了补偿头部运动重新对齐的影响,采用了六参数刚体的空间变换。所有的空间运动位移都在每个方向上进行了小于3mm和小于30°的旋转。此外,将静息态fMRI图像与3D-T1结构高分辨率图像进行共配准。通过基于DARTEL(Diffeomorphic Anatomical Registration via Exponential Lie Algebra)的非线性包裹,将3D-T1结构性MR图像标准化到Montreal Neurological Institute(MNI)空间中。然后使用从结构图像标准化收集到的参数将个体fMRI图像进行空间标准化,同时将其重新采样为3mm各向同性体素。在标准化的个体静息态fMRI数据上应用了6mm全宽半高高斯核。进行了线性趋势去除和0.01-0.027 Hz的带通滤波。实施了6mm FWHM高斯核的空间平滑。采用六个头动参数、全局均值信号、白质(WM)和脑脊液(CSF)信号作为干扰方差,以减少运动效应和非神经元BOLD变异的影响(Hojjati et al., 2018)。类似地,对于基于体素的特征,根据个体专用标准化的T1解剖图像获得掩模图像。利用掩模内的体素测量进行分析。获得的掩模图像可用于进一步的调查和分析中的各种测试。

提出的框架:

图1展示了这个框架中使用的提出的步骤。框架的第一步是准备和处理sMRI(海马亚区域,杏仁核体积)和rs-fMRI图像,以获取相应的时间序列和整个大脑的三维测量数据。从时间序列数据中,我们构建了大脑网络。同样,我们从3D测量中获得了fALFF, ReHo, ALFF, DC, 和SN特征向量。从大脑网络构建中,我们获得了节点度(ND), 介数中心性(BC)和节点路径长度(NL)。同样,对于基于体素的3D结构模型,我们检索到一个3D掩模,该掩模确定了一组“有效”体素来进行统计单变量t检验。此后,我们将海马-杏仁核亚区体积(sMRI)、大脑网络和基于体素的特征向量(rs-fMRI)合并用于最终分类。然后,我们在集成的训练特征集上应用特征降维技术,以选择高度显著的特征向量来训练SVM和RF分类器。我们最终获得了显著特征排名,并将特征向量作为训练样本输入,我们还获得了用于分类的测试样本。由于数据集的大小有限,我们使用10折交叉验证来验证所提出框架的分类诊断性能。在执行10折交叉验证时,总样本的90%用于训练过程,其余10%用于测试。

图1 提出的框架总览

海马亚区和杏仁核体积:

MRI中的海马亚区已经被证明在预测中度症状的阿尔茨海默氏症(AD)中起作用(van Maurik等人,2017年)。更加准确地评估海马的亚体积,以便更精确地计算海马亚区的萎缩测量,并在轻度认知障碍(MCI)以及正常对照个体中识别AD,是非常关键的(郑等人,2018年)。在我们的过程中,使用Freesurfer软件(Fischl,2012)进行了海马分割。首先,使用Freesurfer(版本6)执行皮质和皮下分割,然后使用Freesurfer的segmentHA_T1.sh功能执行海马亚区和杏仁核体积分割(Fischl,2012)。海马萎缩被认为是AD的一个关键指标(Sørensen等人,2017年)。Freesurfer提供的海马亚区分割方法最终被用于估计海马亚区和杏仁核亚区。该程序使用基于图谱的概率贝叶斯界面和超高分辨率离体MRI成像数据(0.1-0.15 mm 同构)创建杏仁核和海马区域的计算分割。同时分割这两个结构确保它们之间没有重叠,并且不可能在它们之间有间隙(Saygin等人,2017年)。海马支、前海马支、旁海马支、Ammon角区域1, 3, 4(简称为CA1, CA3, CA4)、齿状回的颗粒细胞层、海马-杏仁核过渡区(HATA)、纤维带(一种白质区域)、齿状回的分子层、海马的沟裂区以及海马尾是海马的12个区域,如图2所示。同样,杏仁核的附加基底和基底、中央内侧、外侧、皮质以及前区、旁板层核以及皮层-杏仁核过渡区(CTA)是杏仁核的九个子区域。

图 2 | (A) 海马亚区的结构磁共振成像(sMRI)和 (B) 杏仁核体积。

功能网络构建

通过使用自动解剖标记(AAL)模板,将整个大脑划分为90个感兴趣区域,构建了脑网络节点,该模板为皮层提供了完整的功能划分(Tzourio-Mazoyer等人,2002)。每个90个感兴趣区域的每个体素内获得的时间序列被平均,产生作为节点特征的信号。使用整个大脑区域的时间序列之间的皮尔逊相关系数来构建网络的边的值。然后,对粗略的随机连接矩阵进行Fischer的r到z转换,以增强偏相关系数的一致性(Risacher等人,2009; Wee等人,2012)。得到的矩阵在对角线上是对称的,值为零(Zhan等人,2013)。稀疏阈值被用于定义个体大脑网络上可能边的值。阈值充当网络的连接成本,这被解释为大脑网络中超阈值关系的总可能连接数与总数的比率(Sanz-Arigita等人,2010)。没有明确的方法来定义单一的稀疏性阈值,因为不同的稀疏性驱动不同的分析结果(He等人,2009; Hojjati等人,2018)。此实验以1%的间隔检查了从5%到25%不等的成本的每个网络。此外,我们还对不同的阈值进行了分析,以检查最佳阈值(Fornito等人,2010)。为了创建有效的网络参数,我们测量了不同稀疏度水平上不同分类组之间网络参数的统计显著差异。

大脑网络特征提取

使用Matlab 2019a6程序和matlab_bgl计算和评估整个大脑网络参数。所有图矩阵都使用0.01-0.027 Hz频率带上的无向连接矩阵进行评估。为了检索动态特征并消除大量冗余的矩阵特征,我们计算了五个全局图参数。这五个全局图论参数分别是:局部效率、全局效率、聚类系数、特征路径长度和小世界性(Tan等人,2019)。在特征提取部分,我们提取了大脑网络的270个节点特征,其中节点度(ND)、节点路径长度(NL)和介数中心性(BC)被计算用于进一步研究和分类框架。简而言之,对于获得的节点i,节点度(ND)、节点路径长度(NL)和介数中心性(BC)的定义如下:

其中,Lij 表示节点i和j之间的边的最小数量,V 表示图的范围,bij 表示节点i和j之间的网络结构,Sjm 表示节点m和j之间的最短路径长度的数量,Sjm(i) 表示通过节点i在节点m和j之间的最短路径数量。可能的是,路径长度Li 计算通过特定节点传输的消息的速度,每个节点度Ki 对应于连接到特定节点的链接数量;bi 的值越大,节点i在网络内的通信链中的意义就越高,这反映了大脑网络中信息交互的水平。

在本研究中,我们使用REST工具箱流程展示了利用rs-fMRI进行基于体素的特征估计。这些体素特征可以分为DMN(ReHo, fALFF和ALFF)、DC和SN。我们使用ReHo体素来检查大脑在静息状态下的区域性脑活动。Kendall的一致性系数(KCC)方法被用来计算基于体素的特征。对于每个受试者,我们从所有脑体素中获取个体的ReHo图。由于其最近邻体素的存在,获取了较高的ReHo值,并且在簇内获得了较大的区域一致性的脑体素特征。最近的大量研究表明,ReHo在最近的临床实践中具有潜力(Zang et al., 2004; He et al., 2007)。同样,ALFF测量评估大脑的区域自发活动,而fALFF是ALFF的改进版本。通过快速傅里叶变换(FFT)将时间序列转换并滤波到频率区域,然后是其相应的功率范围。fALFF是ALFF的修改域,其特征是低频范围内的平均幅度比率。大量关于大脑的文献表明,当使用统计单变量测试时,与对照组相比,疾病类别在大脑区域的特定信号的异常水平(Arbabshirani et al., 2017)。最近,许多文献已经使用t检验来计算来自神经影像学的描述性生物标志物,以用于机器学习(Chaves et al., 2009; Wee et al., 2012)。统计分析测试的主要结果通常是使用p值来进行的。我们生成了一个诊断特征估计,即ReHo,fALFF,ALFF和DC,在阈值p < 0.05时,在两个分类组之间。相关簇大小在定义的阈值(p = 0.05)上与相应的体素p值有关,由AlphaSim工具(嵌入在REST中)使用Monte-Carlo模拟来确定簇值和簇大小。同样,对于SN,我们使用了一个经过验证的感兴趣区域(ROI),其中包括12个后部和7个前部SN节点,可以通过独立成分分析(Shirer et al., 2012)提取。

特征选择技术

在神经影像学研究中,每个受试者的特征数量与患者数量相比非常高,这是一个被称为维数灾难的现象。此外,处理大量的特征可能会因处理高维数据的计算限制而变得棘手,这可能导致过拟合。特征选择是分类问题之前的一个步骤,它通过选择正确的特征并排除错误的特征,有助于通过选择降低特征的维度。这个阶段减少了训练和测试数据集的计算时间,加速了分类过程并提高了分类精度。为了消除重复和依赖性,我们首先使用Scikit-learn模块中的标准标量函数对提取的特征进行归一化(Pedregosa et al., 2011),这样修改数据集,使其分布具有0的均值和1的单位方差。本模型中使用的特征选择技术如下所述:

最小绝对收缩和选择操作

最小绝对收缩和选择(LASSO)方法(Tibshirani,1996)是一个动态过程,用于选择显著特征集。这种方法基本上是基于正则化和特征消除。LASSO技术有助于通过普通最小二乘回归(OLS)减少分析中存在的残差平方和,这对设计框架的绝对和值施加了限制。LASSO通过最小化以下函数来衡量模型系数β:

其中 xj 表示观测 j 处的数据输入和向量 k,n 表示观测样本。yj 表示 i 处的观测响应。α 是用户定义的非负正则化参数,用于控制惩罚强度。如果 α 足够大,那么参数将被强制为零,最终只生成有效的特征向量。当 α 趋近于零时,模型将转向具有最有效特征向量的 OLS(Hanyu 等人,2010)。

支持向量机-递归特征消除:

支持向量机-递归特征消除(SVM-RFE)方法基本上是一种基于向后特征消除技术的多变量包装技术,它精确地采用一个模型,并消除不太相关的特征向量,直到获得特定数量的相关特征。SVM-RFE(支持向量机-递归特征消除)的排名原则与SVM技术相同。之后,获得最低排名的特征将被消除,因为它在评估时反应最低,而其他特征向量将在另一次迭代中被选为SVM模型。所有无关的特征向量都是基于重复的顺序过程被删除的。所有特征向量根据消除排名进行分级。SVM-RFE技术的详细解释可以在之前的文章中找到(Guyon等人,2002)。在本研究中,在实施SVM-RFE之后,保留了高度信息性的训练特征向量,这提高了训练分类器的交叉验证性能准确性。

联合互信息:

互信息(MI)可以用来评估信息理论中随机变量之间的任意关系(Kraskov等人,2004)。实际上,两个任意变量X和Y之间的MI是一个计算,衡量由X给出的关于Y的知识量,或反之,由Y提供的关于X的知识量。如果X和Y是独立的,即如果X对Y没有信息,反之亦然,那么它们之间的互信息就是零。对于两个随机变量X和Y,MI计算为:

其中 H(.) 表示熵,H(X/Y) 和 H(Y/X) 分别表示条件熵,同样地,H(X;Y) 表示 X 和 Y 的联合熵,计算方式如下:

其中 Px(x) 和 Py(y) 分别表示边际密度值,Px,y(X,y) 定义了 X 和 Y 的联合概率密度值。定义边际密度的函数是:

通过将等式 6、7、8 代入等式 5,我们可以得到互信息(MI)的等式:

该等式的离散形式可以通过对所有可能值的数据求和来表示。因此,需要估计 Px,y(x,y) 来计算 X 和 Y 之间的联合互信息(JMI)。JMI 的离散形式由下面的等式表示:

当 Fk 是特征集 {F1,F2,…,Fk} 中的一个特征,而 Y 是特征可以取得的结果时,MI 技术可以挑选出有效的特征。该过程通常将特征视为独立的随机变量,并根据得到的值 Y 按它们的互信息以降序排序,从而选择前 n 个特征。该过程受到简约和适当的特征向量的制约,这些特征向量应该(i)彼此间不高度相关,且(ii)各自相关。{F1,F2,…,Fk} 和 Y 之间共享的 JMI 在等式 13 中被强调,其中 Fk 和 Y 分别代表 Fk 和 Y 的元素。

JMI 特征消除技术从一个空的特征集开始,迭代计算 Fis,并将其添加到空集中,从而在特征向量和结果之间创建最优增量度量的 JMI。JMI 被认为是迄今为止所有基于信息理论的特征消除技术中最稳定和最灵活的特征降维技术。

随机森林分类器

随机森林是一种集成学习方法,最初由 Breiman(2001)开发,用于解决回归和分类问题。随机森林的实施基于参数设置,其中包括每个分支的特征数量和树的数量。先前的研究指出,通过设置默认参数可以获得最优结果(Immitzer 等人,2012; Zhang 和 Roy,2017)。然而,Liaw 和 Wiener(2002)进行的研究表明,树的数量越多,结果越稳定。在另一项研究中,Breiman(2001)指出,使用更多的树可能对性能没有好处,但对模型也没有负面影响。在另一篇文献中,Feng 等人(2015)分析了,当树的数量=200时,随机森林可以达到精确的结果。关于分割参数,许多先前的研究使用默认参数值

;其中 p 代表预测变量的数量(Duro 等人,2012)。然而,在我们的模型中,我们设置树的数量=100, 200, 500, 和 1000;分割 = 1:10,步长为 1,以获得最佳性能。随机森林分类器是使用 Scikit-learn Python 库实现的(Pedregosa 等人,2011)。

支持向量机分类器

作为一种监督学习技术,支持向量机(SVM)(Cortes 和 Vapnik,1995)通过寻找最佳超平面来划分分类组。通过训练数据,SVM 在给定的特征空间中进行训练。此后,根据测试数据集在 n 维向量场中的排列进行分类。SVM 已经在众多神经影像学领域得到应用(张等人,2011;Collij 等人,2016),并被认为是神经科学领域最强大的机器学习工具之一。从数学上讲,在二维空间中,线性可分的特征向量可以通过一条线来分隔。线的方程由 y = ax + b 定义。通过将 x 替换为 x1,将 y 替换为 x2,方程将变为 a(x1-x2) + b = 0。如果我们规定 x = (x1, x2) 和 w = (a-1),我们得到 w.x + b = 0,这给出了超平面的方程。具有线性可分输出的超平面方程具有以下形式:

其中 y 代表输入数据,zT 代表一个超平面,ϕ(y) 代表将向量 y 映射到高维度的函数。元素 z 和 b 通过相等的值适当地缩放,并且方程(14)中选择的超平面保持稳定。此外,超平面可以制作一对互斥的 (z, b),由以下公式表示:

其中 y1, y2, ..., yN 代表训练向量。方程(15)中的超平面被认为是规范超平面。超平面表示如下:

对于不符合所得超平面的特征 x,下面的方程表示它(Cortes 和 Vapnik,1995):

其中 s 是向量 x 到定义的超平面的度量。因此,来自 SVM 的输出向量 fy 与获得的超平面的距离 sx 和 z 向量完全相等。此外,在这项研究中,我们使用了核支持向量方法,该方法适合使用线性分类方法处理非线性问题,并参与将线性不可分类向量转换为线性可分类。这个想法内部的概念是线性不可分类的向量可能在高维度中是线性可分类的。核在数学上被定义为:

其中 x 和 y 代表输入中的特征,d 代表核元素。高斯径向偏置函数表示为:

其中 x 和 y 代表两个样本输入,它们是输入

中的向量,这可以表示为两个特征之间的欧几里得距离的平方。σ 表示核元素。Sigmoid 函数源自神经网络,用于激活,双极 Sigmoid 函数通常用于人工神经元,表示为:

其中 x 和 y 代表输入中的特征,∝ 和 c 代表核元素。

SVM分类器是通过使用Scikit-learn库(Pedregosa等人,2011)来实现的。Scikit-learn库在内部使用LIBSVM(Chang和Lin,2011)来处理所有计算。为了获得最佳的分类精度,必须调整SVM的超参数;成本c和γ(核宽度)。通过网格搜索和10折交叉验证,这些调整的最优超参数值会自动从指定范围c = 1至9和

至1中选择。交叉验证是一种广泛使用的数据洗牌和重采样技术,用于评估预测模型设计的泛化概念,以及防止分类器的欠拟合或过拟合。交叉验证在预测模式中得到了广泛的应用,如分类问题。在这类问题中,一个框架使用已知的数据集进行拟合,这个数据集被称为训练集,然后在该模型上评估一组未知样本,作为测试集。目的是在训练阶段为模型提供测试样本,然后展示该过程如何适应各种未知数据集。交叉验证的每个阶段都涉及将数据样本划分为独立的数据集,然后分析每个样本。随后,该研究在新的独立子集上进行验证,这些子集称为测试样本。为了减少变异性,通过多个分区执行多个交叉验证阶段,然后考虑结果的平均值。交叉验证是评估模型性能的强大过程。此外,我们的模型中应用了数据分割特性。训练数据用于训练机器学习(ML)分类器,以根据提供的特征预测主题组。然后,分类器将在保留数据上进行微调和测试。首先,模型训练包括一个过程,在这个过程中,ML通过一个过程传递训练数据,分类器发现训练数据的模式。因此,参数被传递给目标变量。

如前所述,我们的目标是开发一个ML分类器,专门用于准确识别患有AD和HC的患者。我们使用有监督和集成学习模型来提出一个有效的ML分类器,用于对AD患者进行分类,以根据一组独立变量预测AD患者的状态。出于交叉验证的目的,我们使用此过程将数据集划分为三个子组。一个集合(测试数据)用于预测模型性能,而另外两个集合(训练和验证)用于通过针对新数据的训练来评估模型性能。在数据准备之后,我们将整个数据集随机分成70:30的比例,其中70%用于训练,30%用于测试。这将使系统在每次运行模型时生成新的组合,从而获得最准确的预测。在模型训练之后,训练数据集被分成两个子集,用于训练和验证。图3简要解释了每个模型。

图3 | 数据分割阶段以图表形式表示。

在这项研究中,我们使用准确度、特异性、敏感性、F1分数和接收者操作特性(ROC)曲线来验证分类器的性能。我们还计算了每个类群的Cohen’s kappa值,它代表两个类之间的评分者间可靠性(Cohen,1960)。Kappa计算表格主对角线上的信息分数比例,然后根据可能仅由偶然达成的一致性量来对其进行调整。对于两个评分者,公式为

,其中p0是评分者之间的相对观察一致性,pe是偶然达成一致的假设概率。在这个方法中,我们将HC(健康对照组)视为阴性样本,AD患者视为阳性样本,TN表示正确分类的阴性样本集的数量,TP表示正确分类的阳性样本的数量,FP表示被分类为阳性的阴性数据集的部分,FN表示被分类为阴性样本的阳性数据集的数量。准确度、特异性、精确度和曲线下面积定义如下:

ROC曲线是通过绘制TP(真阳性)率对FP(假阳性)率得到的曲线,可以计算二分类器的诊断能力。ROC曲线下的面积与分类器的性能成正比。

结果

从人口统计和临床角度看的发现 在AD对HC、AD对MCI、MCI对HC和MCIs对MCIc的比较中,各组之间的年龄差异没有显著性。然而,在所有组合中,MMSE(P > 0.05)和CDR(P > 0.05)存在显著差异。AD在性别上以男性为主,而HC以女性为主,而MCIs和MCIc分别以女性和男性为主。AD中男性的占比为58.73%,而HC中女性的占比为51.47%;而MCIs和MCIc中女性和男性的占比分别为59.45%和60%。这些变量在表1中进行了详细的描述和分析。

高敏感性脑网络特征

本节介绍了由JMI算法获得的顶级脑网络特征。关于所选网络特征数量以及AAL脑区的位置和其在圆形图中的连接性的详细信息,请参见下图4。使用JMI方法进行的特征减少保留了以下所有属性:中介中心性(BC)、节点路径长度(NL)和节点度(ND)特征。我们注意到,在所有的组别分类中,NL特征相对于其他两个网络特征的贡献更大。所选特征在AD vs. HC和MCIs vs. MCIc组中显示了大致相似的特征,包括右侧前中央回(PreCG.R)、左侧中颞回(MTG.L)、左侧上颞回(STG.L)、海马(HIP.L和R)、左侧杏仁核(AMYG.L)和右侧楔状皮层(CUN.R)。在AD vs. MCI分类中,选择了海马(HIP.L和R)、左侧楔状皮层(CUN.L)和杏仁核,以及其他脑区;同样,在HC vs. MCI组分类中,选择了左侧中颞回(MTG.L)、海马(HIP.L和R)和杏仁核(AMYG.L和R),以及其他脑区,如图4所示。由此可见,对于所有的组别分类分析,受影响最大的脑区主要位于颞中回、海马和杏仁核区域,其次是其他脑区。这些脑特征的位置和脑区在附表1-4中进行了展示。

图4 | 具有顶级脑区高辨别属性的皮层区域的位置和网络连接性(BrainNet Viewer)及其对应的循环连接图:(A)阿尔茨海默病(AD)与健康对照(HC)组,(B)AD与轻度认知障碍(MCI)组,(C)HC与MCI组,(D)稳定型MCI(MCIs)与转换型MCI(MCIc)组。

基于体素的敏感性特征

在实现对AD、MCI和HC组的高精度差异预测中,单变量t检验显示出显著的变化区域至关重要。为了达到最佳的分类准确率,先前的研究(Arbabshirani等,2017)在机器学习方法中使用单变量统计t检验来计算基于体素的分析中的组别差异。计算的主要结果依赖于统计检验,通常由p值表示。然后,优秀的p值只保留了有效的脑区。使用不同组别分析的t检验,我们创建了一个具有显著体素差异的分析掩模,其仅保留了ReHo、ALFF和fALFF从rs-fMR图像获得的两个组别之间的显著性差异(p < 0.05)的体素。因此,调整后的个体体素p值为0.05。此后,对于SN(突显网络),我们使用了一个经过验证的感兴趣区域(ROI),其中包括12个后部和7个前部SN节点,可通过独立成分分析提取(Shirer等,2012),如附录图5和附录表5所示。类似地,为了对AD和MCI受影响区域进行全脑研究,我们使用了一种常用的基于图的网络结构度中心性度量,称为度中心性(DC)。度中心性的每个网络中心性图是在研究掩模内以体素为单位创建的。首先,在预处理的功能运行上进行基于体素的全脑相关分析。通过将每个参与者的灰质体内每个体素的时间序列与每个其他体素的时间序列进行相关,创建相关矩阵。使用无向邻接矩阵将相关性阈值设为r > 0.25(Zuo等,2012),计算了每个体素的度中心性,即显著加权连接的权重之和。最后,以体素为单位计算个体级别的度中心性。提出方法基于基于体素的分析获得的高度显著脑区在图5-7和附录图6、7中显示。我们还在附录表6、9中提供了峰值区域及其对应的MNI坐标信息。在这个过程中获得的最具鉴别性的模式和所有区域相干度测量的信息都被计算出来。这可能表明,由于MCI和阿尔茨海默病,大脑的不同部分经历了不同的功能变化。因此,为了实现分类框架的最佳诊断准确性,它应该涵盖有关改变的大脑模式的互补信息。该框架的一个重要发现是,基于体素的有效和重要的区域特征可以补充从rs-fMRI数据和sMRI结构特征中获得的大脑网络特征。

图5 | 两个分类组之间区域同质性(ReHo)体素图的单变量统计双样本检验(A)AD对HC(B)MCIs对MCIc。阈值设定为p &lt; 0.05。热色条和冷色条分别代表负变化和正变化。

图6 | 四个体素图之间的两个分类组(AD对HC)的单变量t检验差异图。

图7 | 四个体素图之间的两个分类组(MCIs对MCIc)的单变量t检验差异图。

分类结果

在这一部分中,我们评估了提出的方法在海马体和杏仁核的sMRI特征、基于脑网络的特征以及基于rs-fMRI的体素特征上的诊断性能,并将它们与SVM和RF分类器的结果进行了比较。我们分别对来自sMRI和rs-fMRI图像的三种特征进行了实现和分析,并将它们与脑网络特征结合起来,有助于改善AD和MCI的分类准确性。综合使用这些特征的方法显示出很大的潜力,在AUC、准确性、敏感性和精确度方面表现更好。对于脑网络特征,我们测量了不同的特征,如ND、NL和BC。通过一系列的成本阈值,在5%到25%的最佳和稳定结果中,用于每个组的诊断分类,如附图1-4所示。同样,对于基于体素的特征,我们计算了五个体素特征,即ReHo、ALFF、fALFF、DC和SN:组间差异的单变量t检验。我们在特征向量上使用10折交叉验证评估了我们的特征约简和分类算法。首先,我们将数据分成10个大小相等的子集(折叠),其中包含90%的子集用于训练,剩余的10%用于测试。然后,在训练子集上进行特征选择。我们实施了不同的特征选择算法,选择重要的特征集来优化分类器的性能。根据获得的顶级选定特征集,训练了SVM和RF分类器。由于每个特征具有不同的尺度,在我们的情况下,我们线性地将每个训练特征升至0到1的范围内;然后在测试数据集上使用相同的缩放过程。在我们的场景中,由于使用的特征数量较少,RBF核(径向基函数核(Radial Basis Function, RBF kernel)优于其他核。对于每个测试和训练子集,我们实施独立的特征选择以避免在10折交叉验证中产生特征选择偏差。我们测量了分类器在给定数量的特征集上的交叉验证准确性,并绘制了所选特征数量与准确性的关系曲线,如图8所示,用于每个组的分类。

图8 | 展示了三种特征选择算法在组合特征向量上对四个不同组别进行分类的性能示例:(A) AD vs. HC,(B) AD vs. MCI,(C) HC vs. MCI 和 (D) MCIs vs. MCIc。横轴表示所选特征的数量,纵轴表示分类准确性。

最后,我们评估了AUC(如图9所示),准确率、敏感度、特异度、F1分数和Cohen's Kappa(如图10所示)以及不同特征选择算法的结果(详见表2-5)。表2展示了AD与HC的分类结果。在本研究中,我们比较了不同特征选择方法在不同特征集上与SVM和RF分类器的性能。联合互信息(JMI)特征降维技术结合SVM分类器在AUC和准确率方面表现最好,超过了其他所有技术。对于AD vs. HC的诊断分类,综合特征向量(海马+杏仁核+脑网络+体素)与单独的特征集相比表现良好,AUC为97.03%,准确率为95.87%,敏感度为97.35%,特异度为95.95%,F1分数为96.33%,Cohen's Kappa指数为0.913。我们注意到SVM-RFE(支持向量机-递归特征消除)和LASSO特征选择算法在AD vs. HC之间没有显著的分类差异。与RF分类器相比,在不同的特征向量上,SVM在准确率方面的表现优于RF,提高了1-6%,但我们注意到LASSO特征在RF分类器中的综合特征具有稍好的特异度。对于使用JMI特征选择的体素特征,我们观察到RF分类器和SVM分类器在准确率方面的表现相似。对于海马和杏仁核体积,使用SVM-RFE特征选择的RF分类器在F1分数方面表现良好。同样,对于AD vs. MCI的分类表现(见表3),我们得到了94.03%的AUC,92.45%的准确率,95.98%的敏感度以及90.45%的特异度,93.75%的F1分数和0.9105的Cohen's Kappa指数。对于HC vs. MCI的分类表现(见表4),JMI特征选择方法取得了最高的分类准确率。虽然单个特征方法之间的差异不大,但JMI对于海马、杏仁核、脑网络和基于体素的特征集的组合明显改善,AUC为92.06%,准确率为90.35%,敏感度为94.34%,特异度为92.11%,F1分数为94.13%,Cohen's Kappa分数为0.9035。更重要的是,从表2-5所呈现的结果来看,在大多数情况下,与海马、杏仁核(sMRI)和基于体素的(rs-fMRI)特征相比,脑网络特征在单独特征中表现出色。

FIGURE 9 | 结合特征向量(海马、杏仁核、脑网络和体素)的ROC曲线:(A) AD对HC组,(B) AD对MCI组,(C) HC对MCI组,(D) MCIs对MCIc组。

FIGURE 10 | Cohen&#39;s Kappa指数对于(A)AD对HC组,(B)AD对MCI组,(C)HC对MCI组和(D)MCIs对MCIc组,针对个体和组合特征集以及不同的特征选择算法。

TABLE 2 | 使用支持向量机(SVM)和随机森林(RF)分类器对阿尔茨海默病(AD)与健康对照组(HC)进行的10折交叉验证的二分类性能。

TABLE 3 | 使用支持向量机(SVM)和随机森林(RF)分类器对阿尔茨海默病(AD)与轻度认知障碍(MCI)组进行的10折交叉验证的二分类性能。

TABLE 4 | 使用支持向量机(SVM)和随机森林(RF)分类器对健康对照组(HC)与轻度认知障碍(MCI)组进行的10折交叉验证的二分类性能。

TABLE 5 | 使用支持向量机(SVM)和随机森林(RF)分类器对稳定型轻度认知障碍(MCIs)与转化型轻度认知障碍(MCIc)组进行的10折交叉验证的二分类性能。

AUC,曲线下面积;ACC,准确率;SEN,敏感性;SPE,特异性;F1,F-分数;SVM,支持向量机;RF,随机森林;SVM-RFE,支持向量机递归特征消除;LASSO,最小绝对值收缩和选择操作;JMI,联合互信息;HV,海马体体积;BN,脑网络。

类似地,针对较少报道的MCIs vs. MCIc组的分类性能使用不同的特征选择方法列在表5中。与之前的模式类似,与其他特征选择技术相比,JMI特征选择方法在AUC、准确率、特异性和敏感性方面都获得了最高的诊断分类结果。然而,对于MCIs vs. MCIc的分类,与表2-5中其他不同组别的分类相比,SVM-RFE和LASSO特征选择的性能没有显著差异。对于MCIs vs. MCIc的分类,我们获得了91.08%的AUC、88.03%的准确率、94.85%的敏感性和89.71%的特异性,以及93.17%的F1分数和0.8831的Cohen's Kappa指数,其中包括海马体和杏仁核特征(sMRI)以及脑网络和体素(rs-fMRI)特征的组合特征集。从表5中可以看出,对于MCIs vs. MCIc的分类,SVM-RFE和LASSO特征选择方法也显示出与JMI特征选择方法相竞争的潜力,分别具有90.19%和89.75%的AUC以及85.32%和85.11%的准确率。我们还观察到,在将sMRI的海马体和杏仁核体积与rs-fMRI的脑网络和体素特征结合起来对MCIs vs. MCIc进行分类时,准确性显著提高。总的来说,与RF分类器相比,SVM分类器在几乎所有的特征选择技术和三种不同类型的特征集上表现更好。这可能是由于训练数据较少与特征集数量之间的不平衡。当特征数量较大且训练数据较少时,SVM优于RF,而对于多类问题,RF优于SVM,而对于二元分类问题,SVM更好。

从所有这些报道的结果来看,明确证据表明,将JMI作为特征选择算法应用于MCI和AD对HC的分类以及MCI的转化预测中,结合SVM分类器使用结构特征(海马体和杏仁核)、脑网络和基于体素的(rs-fMRI)特征具有巨大的潜力。更重要的是,图9中所示的AUC曲线显示,对于所有的分类组别,提出的模型非常稳定。

讨论

早期发现阿尔茨海默病对治疗和预防脑组织损伤具有重要意义。过去的研究中,研究人员使用了多种统计和机器学习模型来诊断AD。临床研究中,MMSE评分、MRI分析(如标准化全脑体积、海马体体积)、脑脊液生物标志物(如β-淀粉样蛋白42)以及结合生物标志物等方法已显示出对AD诊断具有潜在价值【van Maurik et al., 2017】。然而,由于AD患者的MRI数据与老年人正常健康者的MRI数据之间的相似性,使得AD的检测变得困难。最近的研究指出,海马体亚区体积在AD和Lewy小体痴呆等痴呆疾病中普遍减小【Delli Pizzi et al., 2016; Mak et al., 2016, 2017】。其中一项研究发现,在AD患者中,CA1、CA2-3、CA4、DG和总Subiculum(Subiculum、Presubiculum和Parasubiculum)的体积减小【Mak et al., 2017】。此外,rs-fMRI数据不仅涵盖了特征数值,还包含了丰富的动态时间信息。许多研究使用rs-fMRI数据进行诊断分类,包括MCI和阿尔茨海默病与健康人群的分类。然而,这些研究通常只关注结构特征、图论方法或基于体素的方法,未能充分利用结构特征(如海马体-杏仁核)与脑网络和基于体素的特征的潜力。因此,为了充分探索rs-fMRI和sMRI在AD诊断中的潜力,本研究结合了来自sMRI的海马体亚区和杏仁核的体积以及来自rs-fMRI的脑网络和基于体素的特征(如ReHo、fALFF、ALFF、DC和SN),对四个二分类组进行了诊断分类的性能评估。实验结果表明,每个特征集对于实现良好的分类性能都具有重要意义。

近期的文献作品分析了神经影像学方法在阿尔茨海默病的区分分类方面的应用,重点关注MCI患者(可能发展为阿尔茨海默病)与健康对照组之间的区分,以及将患有阿尔茨海默病的个体与健康对照组进行区分。然而,由于大部分文献使用不同的数据集和分类方法,直接比较这些最新方法变得困难,这两个因素都对性能准确性产生了显著影响。通过将不同的特征选择方法与不同的分类器结合,先前的研究对AD vs. HC和MCIs vs. MCIc的二分类任务报告了不同范围的准确性,如表6、7所示。这些研究利用ADNI数据库评估了他们提出的方法,我们可以清楚地看到分类准确性受被试数量的影响,随着被试数量的增加,准确性会降低。如结果部分所报告的,本研究在AD vs. HC和MCIs vs. MCIc的二分类任务中获得的最高分类准确性分别为95.87%和88.03%,使用了结合了JMI特征选择的特征组合,如图11所示。如果将我们得到的结果与AD vs. HC和MCIs vs. MCIc分类的现有最先进方法进行比较,我们的框架表现更好。大部分研究(包括Khazaee et al., 2015和Lama and Kwon, 2021)仅使用了有限数量的数据集,这是因为ADNI数据库中fMRI数据的可用性有限。对于MCIs vs. MCIc的分类任务,之前的方法(Khazaee et al., 2015;Zhang et al., 2021)在构建脑网络方面的准确性低于本研究,因为它们仅分析了功能方面的特征。只有Hojjati et al. (2017)使用rs-fMRI的图论和机器学习技术(mRMR, FS)进行疾病分类,准确性达到91.4%。然而,由于样本量(仅18人)不足,并且结果不具有普遍代表性。在本研究中,我们使用了rs-fMRI和sMRI特征进行二分类,并发现将结构性和功能性MRI数据结合起来可以提高分类性能。在我们提出的框架中,我们发现结合了sMRI(海马体亚区和杏仁核的体积)和rs-fMRI(脑网络和体素)模型在两组分类(MCIs和MCIc)中优于单一的sMRI或rs-fMRI模型,准确性有所提升【Ardekani et al., 2017; Zhang et al., 2021】,如表7所示。因此,在本研究中,我们提出了结合sMRI和rs-fMRI进行疾病分类的方法。Schouten等人使用了sMRI和fMRI来区分16名AD患者和22名正常对照组。他们发现结合两种模态的特征可以提高分类性能,并在AD vs. HC分类中达到了89.5%的准确性【Schouten et al., 2016】。在这里所呈现的所有最先进的研究中,都对分类任务进行了分析和执行,并得出了结论。此外,我们还使用ADNI数据集进行了我们提出的方法的实验,参与者数量比现有的文献作品更多,并进行了交叉验证。识别MCIc受试者是具有挑战性的,因为我们在这些参与者中使用了基线的sMRI和rs-fMRI图像,而他们在6至36个月后转变为AD。他们在转变为AD的时间上表现出异质性,范围从6至36个月不等。与未转变为AD的MCIs患者相比,转变为AD的MCIc患者在基线时可能具有相似的脑网络和结构,而转变为AD的时间较短(例如6个月)的MCIc患者的脑网络和结构可能与AD患者相似。此外,MCIc个体是唯一在36个月的随访期内从MCI转变为AD的不稳定患者群体。事实上,至少在36个月内,MCIs、AD和HC组的患者保持稳定,没有转变到其他组。此外,我们注意到MCIc患者的不稳定性,因为其中一些患者在36个月后转变为AD,然后又返回到MCI状态。与早期研究不同,我们的研究不仅考察了MCIs/MCIc两组患者的转化敏感性,还分析了其他患者组的脑区。从这两组中选择的高度敏感的脑区在图4和补充表1-4中列出。值得一提的是,在脑网络中,介数中心性贡献了70-75%的特征,而特征组合中贡献了30-35%的特征。我们的研究结果表明,在功能性网络中,介数中心性传递了更多的疾病信息,并且顶部选择的特征对于MCIs vs. MCIc和HC vs. MCI的更高效检测更为敏感。我们的研究结果与早期的研究一致,这些特定的脑区与AD和MCI转化有关【Liu et al., 2013】。人们早已认识到MCI病理过程中许多脑区的重要性。

表6. AD vs. HC的最先进方法的性能比较。

表7. MCIs vs. MCIc的最先进方法的性能比较。

图11 | 条形图显示不同特征选择方法下的各组别(A) AD vs. HC组,(B) AD vs. MCI组,(C) HC vs. MCI组,以及(D) MCIs vs. MCIc组在不同特征向量上的结果:海马-杏仁核体积,脑网络 (BN),体素,以及组合特征集合。

先前的研究注意到患有阿尔茨海默症的个体在颞叶区域的网络紊乱(He等人,2009)。在其他研究中(Liu等人,2013),也注意到AD患者的颞中回(MTG)和PreCG(前中央回”(precentral gyrus))中的功能丧失。与先前的文献相比,我们注意到在AD和初始MCI中,颞叶区域可能会受到更多的损害。MTG在MCI和AD分类的特征选择中非常敏感。颞上回(STG)、楔叶(CUN)、前中央回(PreCG)和MTG的节点度以及海马(HIP)、杏仁核(AMYG)和下颞回(ITG)的介数中心性被显示为在区分AD和HC方面具有区别性。MCIc分类中的MCI也遵循类似的趋势。STG、颞中回(MTG)和CUN的节点度以及杏仁核(AMYG)和海马(HIP)的介数中心性被显示为在区分MCI和MCIc方面具有区别性(见补充表4)。总的来说,使用JMI算法为脑网络选择了高度敏感的特征。此外,所选的脑区携带有关疾病的更多信息和更敏感的特征,这产生了更准确的性能。颞区在MCI和AD中起着重要作用。我们还建议探索其他区域,如尾状核、额上回、眶额皮质、枕叶等区域,以进一步探索AD中的疾病病理学。

局限性

我们的研究有一些局限性。首先,样本量有限,可能影响了组间统计分析的稳健性。需要进行更大样本量和不同数据集的进一步分析。数据不平衡是另一个缺点。我们的目标是在未来分析高质量的数据,使用更平衡的样本进行特征选择和分类,或设计一种更强大的方法来提高分类准确性和泛化能力;模型的泛化能力应该通过使用ADNI之外的不同数据库进行考虑。由于ADNI数据库正在增长,未来的研究应该获取更大的样本,并平衡个体的数量。未来的研究还应该考虑不同阶段AD的不同网络分析和分类方法,以及功能性脑异常的可解释性。需要评估模型在多个数据集上的鲁棒性。我们认为,通过对被试者进行随访数据记录,可以更好地展示变化的生物标志物敏感特征所在的脑区,从而提高主体设计的意义。如果参与者在保持基线控制的同时记录随访数据,可能会产生更重要和准确的发现。

结论

阿尔茨海默病是老年人中一种不可逆转的主要健康问题,考虑到保护性反应和减缓阿尔茨海默病进展的开始是非常重要的。因此,正确识别阿尔茨海默病和轻度认知障碍进展的各个阶段具有重要意义。在本文中,我们利用sMRI获取的海马亚区和杏仁核体积与来自rs-fMRI的脑网络特征和多种测量特征相结合。迄今为止,已经确定了几种用于阿尔茨海默病诊断的解剖MRI成像生物标志物。使用皮层和皮层下体积、海马体积和杏仁核体积有助于区分患有阿尔茨海默病的患者和健康人群。同样,rs-fMRI数据提供了特定的数值信息,同时也为丰富的动态时间相关性作出了贡献。然而,这些先前的研究分别使用了生物标志物海马亚区和杏仁核体积、脑网络或基于体素的多种测量特征。因此,为了分析sMRI和rs-fMRI在阿尔茨海默病识别中的全部潜力,我们在研究中利用了组合特征。此外,我们还使用并比较了不同的特征选择算法,以选择最佳特征集以获得最大的分类准确性。我们还比较了SVM分类器和RF分类器的性能。根据所获得的结果,JMI特征选择与SVM算法相比其他算法明显提高了性能准确性。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值