Radiology:脑肿瘤成像中不使用钆对比剂:可行还是幻想?

钆对比剂(GBCAs)是目前原发性脑肿瘤MRI检查方案在患者诊疗全过程中的基石。尽管作为肿瘤分级的指标并不完美,GBCAs仍在诊断和监测中被反复使用。但实际工作中,放射科医生会遇到GBCA注射并非必需或获益存疑的情况。减少GBCA的使用,可以减轻患者(尤其是儿童等脆弱人群)重复成像检查的负担,最小化潜在的副作用风险,并在成本和工作流程方面获益。此外,从长远来看,减少GBCA的使用也有利于医疗系统的可持续发展。本文将在现有文献基础上,回顾减少儿童和成人原发性脑肿瘤患者GBCA使用的成像策略。早期术后MRI和胶质瘤固定间隔成像,是生存获益不确定的GBCA使用实例。对胶质瘤使用半剂量GBCA,以及对脑膜瘤仅使用T2加权成像,是减少GBCA使用的备选方案。尽管多数成像指南推荐在诊断和治疗的各个阶段都使用GBCA,无对比增强序列(如动脉自旋标记)已显示出巨大潜力。利用人工智能从减量或无GBCA扫描中合成对比增强图像的方法,有望取代依赖GBCA的方案。本文聚焦儿童及成人的胶质瘤和脑膜瘤,特别关注所纳入文献的质量和临床实用性。本文发表在Radiology杂志。可添加微信号1996207406318983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,思影提供脑影像数据分析及课程,如感兴趣也可添加微信咨询)。

摘要:

      在原发性脑肿瘤影像学检查中,降低剂量和采用临床驱动的成像是在不影响患者护理的情况下减少钆对比剂暴露的措施;先进的MRI技术和人工智能将进一步扩大无钆对比成像的选择。

要点:

■ 一些胶质瘤影像学指南中包括如何限制特定病例成像频率和钆对比剂(GBCA)使用的建议。

■ 一些研究表明,将GBCA剂量降低至标准剂量的50%-75%,不会影响胶质瘤和脑膜瘤的诊断质量。

■ 根据回顾性研究,对比增强(CE)MRI可能几乎不能为儿童胶质瘤提供额外信息。

■ 包括弥散加权成像、酰胺质子转移化学交换饱和转移、MR波谱和动脉自旋标记在内的先进MRI技术,似乎是CE序列的有前景的替代方案。

■ 使用人工智能从减量或无GBCA序列生成的合成对比增强图像,是标准GBCA增强扫描的有前景替代方案。

引言:

      在原发性脑肿瘤成像中,不含对比增强(CE)序列的MRI方案通常被认为不足以满足诊断目的(1)。通过使用钆对比剂(GBCAs),T1加权CE图像有助于勾画病变边界、鉴别实体并评估疗效。最常用的脑灌注技术——动态磁敏感对比(DSC)MRI,也依赖于GBCA注射(图1)。

图片

图1:T2液体衰减反转恢复(FLAIR)图像、对比增强T1加权(CE-T1w)图像以及动态磁敏感对比灌注相对脑血容量(rCBV)图是原发性脑肿瘤评估的支柱。该示例说明了这三个序列在一例异柠檬酸脱氢酶野生型胶质母细胞瘤患者一线治疗后随访中的独立价值和表现,患者于治疗结束后3个月(第1周)进行随访。右侧基底节区出现新的高信号(白色箭头,第1周),因此在39周后观察到微弱的对比增强(橙色箭头,第39周),52周后该区脑血流量上升(绿色箭头)。请注意,不同序列受累的脑区不同。

      由GBCA注射引起的健康担忧(客观或主观)、患者舒适度以及成本,促使人们寻求减少GBCA使用、缩短检查时间的MRI方案在神经肿瘤患者中的应用(2)。在生存期延长、随访时间更长的背景下,特别是对于儿童和成人缓慢生长的低级脑肿瘤患者,引入减少GBCA的成像方案在临床上是可取的。

      本文涵盖了在原发性脑肿瘤亚型分类、治疗计划和随访中减少GBCA暴露的替代图像采集和评估方法(图2)。审视了放射科医生和外科医生仅依赖无GBCA(或减量)图像的准确性,以及指南中关于GBCA使用和成像间隔的建议。我们还考虑了探测肿瘤生理特征和代谢的先进MRI技术,以及允许从无GBCA图像进行诊断预测和合成CE图像的人工智能应用。本文范围之外的是其他成像模式(如PET)以及需要GBCA给药的初始鉴别诊断考虑(如感染、炎症或脑转移)。胶质瘤和脑膜瘤是本综述的主要关注点。

图片

图2:影像学评估实践(也在指南中表述)、无钆基造影剂(GBCA)的高级MRI序列以及人工智能是帮助减少GBCA在神经肿瘤学MRI诊断各个阶段使用的三大支柱。

      我们旨在为临床医生提供关于原发性脑肿瘤成像中减少GBCA使用的现在和未来机遇与挑战的最新信息。关于神经放射学中GBCA减量使用的总体概述,我们建议参考Falk Delgado等人的文章(3)。

材料与方法

研究文章

     这篇文献综述包括2008年1月至2023年3月期间发表的研究,由负责各子主题的专家团队选择,他们搜索了原创研究文章以及相关的荟萃分析和系统综述。所选文章必须明确或隐含地提出了在原发性脑肿瘤诊断MRI的各个疾病阶段(除首次MRI检查的鉴别诊断外)避免或减少GBCA使用的解决方案。由于发表日期的原因,大多数研究无法遵循2021年世界卫生组织(WHO)脑肿瘤分类(4)。

      所有作者在搜索技术上都有自由,但推荐使用PubMed作为搜索工具。可能相关的文章被收集在云端,全文阅读并评估范围和纳入标准。全文阅读还提供了进一步的搜索词和可能相关的文章。在适当的情况下,使用2015年诊断准确性报告标准和人工智能在医学影像学中的清单,以共识方式选择最相关的文章。

       附录S1详细阐述了该方法,结果如表S1和图3所示。

图片

图3:流程图直观显示了为塑造本综述内容而进行的文献检索。未包含钆对比剂(GBCA)依赖技术与无GBCA(或减量)技术的直接比较的研究被认为相关性较低。AI =人工智能。

指南

      选择了国家和学会关于胶质瘤和脑膜瘤成像的指南,以尽可能实现全球代表性,这涉及通过联系欧洲医学磁共振协会非洲MRI教育与研究促进联盟(5)或ESMRMB CAMERA工作组等多个国际组织的同行来询问指南使用情况。

结果

指南和标准影像学评估

      指南综述——我们分析了14个国家和8个国际学会关于儿童和成人胶质瘤和脑膜瘤患者成像实践的指南,旨在尽可能代表所有全球区域(表)。然而,对于一些世界区域和国家,无法追踪到成像指南。在分析的指南中,我们发现支持无GBCA随访或降低扫描频率的证据有限。

表 关于GBCA的指南检查

图片

图片

      大多数指南建议在诊断和治疗的所有阶段使用GBCA增强MRI。一些胶质瘤指南提到缺乏关于最佳随访频率的高质量证据(例如,英国国家卫生与护理卓越研究所(NICE)指南;西班牙指南;欧洲神经肿瘤学会(EANO)指南)。EANO指南建议,对于病情稳定的低级别胶质瘤(LGG)(WHO I级或II级)患者,延长随访间隔是合适的,仅在出现新症状时进行额外的MRI检查(1)。NICE指南讨论了频繁扫描随访的可能缺点,如增加患者焦虑和成本。丹麦指南建议对非增强胶质瘤跳过早期术后成像(<48小时),因为评估非增强残留肿瘤有困难,而建议仅在12周后评估切除完整性(7)。儿童神经肿瘤学反应评估指南提出,可考虑在非增强儿童LGG(低级别胶质瘤)中进行无GBCA随访成像(8)。

      关于脑膜瘤,EANO和丹麦指南建议对小的无症状脑膜瘤进行无GBCA随访,仅依靠T2加权图像的测量(9,10)。对于WHO I级脑膜瘤,在连续5年每年稳定随访后,MRI间隔也可延长至每两年一次(9,10)。

成人肿瘤亚型分化——两项前瞻性试验使用几种GBCA类型(n=141和n=352)表明,将GBCA剂量降低至建议的0.1mmol/kg标准剂量的50%和75%,不会影响胶质瘤和脑膜瘤的诊断可见性(11,12)。

       需要更多关注无GBCA情况下胶质瘤亚型分化的研究。一项2010年的研究比较了无GBCA成像与标准成像在区分LGG(n=16)和高级别胶质瘤(HGG)(WHO III级或IV级;n=32)方面的诊断准确性(13)。ROC曲线下面积(AUC)分别为0.95和0.94。该研究强调了基于磁敏感加权成像识别微出血以区分LGG和HGG的相关性。另一项研究发现,弥散加权成像中肿瘤与正常表观白质平均表观弥散系数之比是预测胶质瘤异柠檬酸脱氢酶状态的最强单一预测因子(AUC为0.83,而增强模式的AUC为0.65;n=290)(14)。然而,在联合特征预测模型中,增强模式是有价值的(14)。一项关于WHO 2016分级的混合成人脑干胶质瘤的小型回顾性研究(n=29)显示,首次就诊时的表观弥散系数是预测生存的唯一显著影像标志物(15)。表观弥散系数对胶质瘤级别分化具有良好的敏感性和特异性(分别为81%[95%CI:75,86]和87%[95%CI:81,91];n = 1172)(16)。然而,由于样本量小和类别不平衡,结果可能无法推广。

       一项回顾性研究(17)表明,无GBCA的脑膜瘤WHO分级(n=232)与CE(对比增强)成像相比并不劣于后者(P=0.10)。一项荟萃分析(n=1552)显示,表观弥散系数与脑膜瘤级别呈负相关(18)。

成人切除和放射治疗计划 ——HGG中切除和放射治疗计划的标准通常是外周CE边缘,以及周围组织在T2 FLAIR成像上呈高信号的变宽边缘作为安全边界。虽然不是标准做法,但有一种趋势是在T2 FLAIR成像中包括非增强肿瘤和/或水肿区域,即所谓的超边缘切除。几项研究表明,基于FLAIR的超边缘切除可以延长生存期,而不会对神经功能结局产生负面影响。例如,一项单中心研究(n=1229)发现,如果切除范围除外周CE(对比增强)边缘外还包括大部分周围FLAIR异常,无论是初治还是复发病例,生存期都有改善(20.7 vs 15.5个月;P<0.001)(19)。然而,大多数研究的回顾性设计以及未能区分非增强肿瘤和水肿仍然是问题所在。

      一项研究表明,在174例胶质母细胞瘤患者中进行FLAIR引导的放射治疗计划是可行且安全的,与之前一项研究(中位总生存期为15个月)相比,可导致相对较长的生存期(在这项单臂研究中中位总生存期为23个月[20])。

成人随访——我们没有发现在胶质瘤随访中比较无GBCA与标准CE成像的研究,也没有关于无GBCA成像对生存影响的研究。一项包括17项胶质瘤研究的荟萃分析显示,弥散加权成像可用于区分复发性肿瘤和治疗相关改变,敏感性为82%(95%CI:76,87),特异性为83%(95%CI:76,89),AUC为0.90(95%CI:0.87,0.92),表明无GBCA技术在随访中的潜力(21)。

       缺乏高质量的研究来调查固定间隔成像在胶质瘤患者中的获益(22)。一项回顾性研究(n=125)得出结论,早期术后MRI检查不影响生存(23)。

       对于脑膜瘤随访,几项研究调查了单独使用T2加权图像的非劣效性。最大的一项研究(n=122)得出结论,除了海绵窦病变外,WHO I级和II级脑膜瘤的治疗和未治疗病例可单独使用T2加权成像进行随访以识别肿瘤生长,且优选三维T2加权图像以减少测量误差(24)。

儿童肿瘤的诊断和疗效评估——尽管关于GBCA在儿童脑肿瘤诊断和随访中的应用一直存在讨论,但缺乏高质量的研究。在诊断和随访期间,很少有替代方法可以提高病变的对比度。儿童的疗效评估标准尚未得到验证,临床试验主要依赖于成人系统,如神经肿瘤学疗效评估标准(25,26)。

       儿童LGG的固有特性是,随着时间的推移,对比增强会出现增减变化,疗效评估标准包括T2加权和FLAIR加权序列(8)。在一项包括88例非神经纤维瘤病1型低级星形细胞瘤患者的队列研究中,Campion等(27)表明,仅在2%的扫描中观察到CE(对比增强)特征的变化。在没有其他临床症状的情况下,这些变化都不会导致治疗方案的改变。Dünger等(28)研究了7248名接受CE检查的儿童患者(30%怀疑或已知肿瘤)。他们表明,GBCA仅在0.3%的个体中提供了额外信息,质疑了在儿童人群中使用标准GBCA的益处。

       然而,GBCA在检测脑膜转移性疾病方面确实发挥作用。在这些病例中,CE MRI的阳性率高于腰穿细胞学评估(n=17和n=18)(29,30)。据我们所知,还没有专门针对使用无GBCA图像进行切除或放射治疗计划的儿科研究。

儿童肿瘤的随访——减少GBCA使用的最大潜力在于监测成像领域。Maloney等(31)表明,孤立性视路胶质瘤的疗效评估不需要CE检查(n=42)。在另一项对17名神经纤维瘤病1型儿童和21名非神经纤维瘤病儿童进行约8年随访的研究中(32),作者得出结论,8名儿童根据CE(对比增强) MRI结果改变了治疗方案,但肿瘤大小的变化在其他序列中也很明显。Malbari等(33)研究了28例视交叉下丘LGG患者,共683次监测扫描。他们发现67例进展需要改变治疗方案,在所有无GBCA序列中都可以检测到。Marsault等(29)对17例类似患者进行了调查,报告在未增强序列中检测肿瘤进展的敏感性高达88%,特异性高达100%。这些研究可能表明,在儿童惰性LGG中进行无GBCA监测是可能的,但样本量小,需要谨慎对待。一项对67例毛细胞型星形细胞瘤患者的2016年研究表明,在全切除和无进展生存5年后,停止对WHO I级毛细胞型星形细胞瘤进行非临床驱动的随访(34)。

先进成像技术

      过去十年,MRI在表征肿瘤生理特征和分子特征方面取得了重大进展,无需使用GBCA。虽然这些技术通常可在临床MRI扫描仪上使用,但大多数方法还有待大规模方法学和临床验证(35)。

       动脉自旋标记——动脉自旋标记(ASL)通过测量脑血流量(CBF)无创地描绘肿瘤血管化(图4),有可能取代DSC成像。研究表明,ASL和DSC成像在区分HGG(高级别胶质瘤)和LGG(低级别胶质瘤)方面具有同样高的性能(AUC均为0.9;ASL相对CBF cut-off值为1.36;n=44)(36)。与DSC成像一样,当将肿瘤CBF标准化到对侧正常灰质时,ASL可获得更可靠的结果,以减少CBF的测量和生理变异性。然而,最佳cut-off值因扫描仪和ASL实现的不同而异,需要进行多中心验证研究。另一种无创肿瘤血管化评估方法是通过弥散加权成像的体素内非相干运动模型测量毛细血管微循环。一项研究(n=30)表明,它是异柠檬酸脱氢酶状态的更好预测因子(AUC为0.81),优于动态CE成像衍生参数Ktrans(AUC为0.773)(37)。

图片

图4:一例非增强性左额岛胶质母细胞瘤(异柠檬酸脱氢酶野生型)的对比增强T1加权(CE-T1w)、酰胺质子转移化学交换饱和转移(APT-CEST)、动态磁敏感对比(DSC)和动脉自旋标记(ASL)图像。在肿瘤位置,即使在T1低信号区域之外,酰胺含量也有所增加(APT-CEST扫描上为红色)。DSC相对脑血流量(rCBF)图和ASL脑血流量(CBF)图之间具有良好的一致性,均显示病变处有高灌注(病变位置为绿色和红色),是恶性肿瘤的标志。

      比较GBCA和无GBCA方法在儿科人群中的研究很少。然而,一项研究(n=37)发现,ASL在区分高级别和低级别星形细胞瘤方面达到了与DSC成像相似的性能(cut-off值为0.82时,敏感性为100%,特异性为95.5%)(38)。  

      ASL也是DSC成像治疗监测的一种潜在无创替代方法。在区分胶质瘤复发和放射效应方面,ASL与DSC性能相当,CBF较低(n=69;ASL:cut-off值1.86,准确率79.7%;DSC准确率82.6%)(39),可区分复发和假性进展(n=116;ASL AUC 0.72;DSC AUC 0.87)(40)。ASL还可能有助于在较低磁场强度(即1.5T)下识别假性进展(n=26;ASL准确率69%;MR波谱准确率74%;动态CE MRI准确率69%;DSC准确率79%)(41)。

      分子成像:酰胺质子转移化学交换饱和转移和MR波谱——研究最多的肿瘤分子特性成像方法之一是酰胺质子转移化学交换饱和转移(APT-CEST)(图4),这是一种对含有可交换质子的蛋白质和肽敏感的新序列。使用APT-CEST的研究远少于ASL。初步结果表明,APT-CEST(AUC 0.911)在识别假性进展方面可能优于ASL(AUC 0.852)(n=48)(42)。APT-CEST(cut-off值1.53;AUC 0.877)和DSC(AUC 0.927)不仅在胶质瘤患者(n=46)中对HGG和LGG进行分类的表现相当好(43),而且APT-CEST(cut-off值2.56;AUC 0.886)能够帮助在无明显对比增强的胶质瘤中对肿瘤进行分级(n=34)(44)。

      MR波谱可用于评估组织中胆碱、N-乙酰天冬氨酸和2-羟基戊二酸的水平,是脑肿瘤中最常研究的先进代谢成像方式。一项对1228名患者进行的质子(1H)MR波谱的荟萃分析显示,使用胆碱/N-乙酰天冬氨酸比值可以区分HGG和LGG(AUC 0.87)(45)。虽然其性能相对稳定,但研究使用不同的阈值、代谢物或代谢物比值,使1H MR波谱在肿瘤成像中的统一化变得复杂(45)。一项对460名接受2-羟基戊二酸MR波谱采集的患者进行的荟萃分析显示,在肿瘤分级(敏感性和特异性分别为95%和91%)和异柠檬酸脱氢酶状态识别(75%和94%)方面具有出色的汇总敏感性和特异性(46)。

     初步研究已确定了其他有前景的无GBCA技术,如血管结构成像、弥散峰度成像、弛豫测定和指纹识别以及MR弹性成像,用于术前和随访胶质瘤成像(35,47)。

人工智能方法

     可以提取定量图像信息(特征)来开发肉眼看不见的生物标志物。人工智能,特别是机器学习,通过利用预先设计的图像特征(影像组学)或自动创建特征(深度学习)提高了分析能力。后者允许在GBCA减量研究中使用先进的图像分割和生成。

     合成CE(对比增强)成像——使用深度学习可以通过无GBCA或GBCA减量图像输入生成合成GBCA图像。据我们所知,目前尚无研究使用先进的MRI序列作为输入。在这一神经肿瘤学新兴领域的十几篇概念验证研究中,我们观察到生成对抗网络(特别是具有双重架构的循环生成对抗网络)与U-Net相比,似乎具有更高的性能准确性。合成CE T1加权图像通常是输出,一项研究中有一个值得注意的例外,其中对比前FLAIR产生CE FLAIR图像,与T1加权图像相比,它可能对小病变更敏感(48)。一项大型多中心GBCA替代研究通过位置和扫描仪类型证明了通用性,显示图像对之间的CE体积不匹配仅为7%。因此,在组水平上,无需GBCA即可进行治疗反应评估(49)。一些研究人员使用仅含10%-25%标准GBCA剂量的图像作为深度学习模型的输入,也成功恢复了全质量CE图像,详见其他文献(50,51)。在这种情况下,GBCA的不同弛豫率是一个未解决的研究课题。

      影像学生物标志物——影像学生物标志物研究通过使用来自无GBCA成像的特征与来自CE(对比增强)成像的特征进行了机器学习准确性的直接比较。然而,很少将减少GBCA使用作为主要目标。相反,通常使用迭代发现过程,通过训练可用数据(可能包括单个序列或序列组合,有或没有临床信息)来开发最佳生物标志物。然后重点转移到在合适的测试数据上验证模型。在儿科环境中,一项研究检查了CE T1加权图像在区分儿科后颅窝肿瘤类型(包括星形细胞瘤)中的附加价值,通过手动分割肿瘤,应用一系列放射组学特征,并用支持向量机对不同组进行分类(n=136)(52)。作者表明,CE T1加权图像没有附加贡献,因为星形细胞瘤在无GBCA序列的组合模型中得到最佳区分(AUC 0.955 [95% CI: 0.810, 0.997])。

      一些概念验证研究评估了非增强性瘤周区和CE肿瘤区,以进行来自CE和无GBCA图像特征的直接分析。例如,一项研究将PyRadiomics(开源标准化影像组学特征)应用于285名胶质瘤患者图像上的分割区域。在区分LGG和HGG方面,它是非劣效的(无GBCA时敏感性和特异性>85%)(53)。另一项比较研究(n=46)发现ASL和DSC PyRadiomics特征之间存在高度相关性(超过一半的75个测试特征的斯皮尔曼ρ或皮尔逊r>0.7)。两种方法在区分LGG和HGG方面表现良好(AUC>0.89,方法间P=0.133)(54)。一项使用Qmazda特征(另一个开源影像组学知识库)进行相同胶质瘤分级任务的研究发现,使用FLAIR图像的性能准确性不低于CE T1加权图像(n=181;AUC>0.86)(55)。在这项和其他类似的诊断生物标志物机器学习研究中,源自不同序列的特征组合优于源自单个无GBCA输入序列的特征组合。在将机器学习模型视为临床就绪工具之前,特别是在前瞻性多中心研究中,需要进一步的分析和临床验证(56,57)。

      据我们所知,虽然没有使用人工智能减少GBCA使用的治疗计划研究,但一些研究允许进行亚组比较分析。例如,一项在脑膜瘤患者(n=1728)中进行的大型研究,以确定影响手术治疗的脑侵犯,显示当分别使用T2加权和CE T1加权图像进行PyRadiomics特征提取和支持向量机分类时,具有相似的判别性能(AUC>0.7)(56)。在一项多中心研究(n=496)中,深度学习(特别是残差卷积神经网络)根据异柠檬酸脱氢酶状态对胶质瘤进行分类,无论在T1加权图像中是否使用造影剂,准确性相似(AUC分别为0.92和0.86;未报告显著性水平)(58)。这两个例子表明,源自序列组合的特征比源自单个无GBCA序列的特征允许更高的分类性能准确性。 

      一项机器学习研究对有和无GBCA的T1加权序列进行了比较,以区分HGG中的进展和假性进展(59)。使用PyRadiomics特征和广义提升回归模型,在没有GBCA的情况下性能显著下降(n=124;AUC 0.82 vs 0.65)。作者得出结论,不能省略GBCA(59)。然而,没有与其他无GBCA序列进行比较,众所周知,在这种情况下,T2加权序列、扩散张量成像、ASL和MR波谱可能具有判别力(60)。另一项使用深度学习区分进展和假性进展的研究发现,FLAIR和扩散加权成像组合优于CE(对比增强) T1模型(n=55;AUC分别为0.82和0.57)(61)。

结论

     尽管缺乏前瞻性高质量研究,但根据目前的证据,可以考虑倡导减少钆基造影剂(GBCA)的使用,包括:(a)每次脑扫描减少GBCA剂量,(b)放弃非增强性肿瘤患者的早期术后MRI,(c)临床驱动而不是固定间隔的随访成像,以及(d)在脑膜瘤随访中完全省略GBCA。在选定病例中,可以考虑在没有GBCA增强序列的情况下监测低级别儿童胶质瘤,但不能用于初始诊断。对于成人胶质瘤,缺乏证据表明无GBCA监测就足够了。高质量,特别是前瞻性多中心研究可以解决这一需求。先进的成像技术和新兴的人工智能解决方案可能会在不久的将来挑战神经肿瘤学成像对GBCA的依赖性。无GBCA的动脉自旋标记灌注成像今天已经是一个可接受的替代方案。最终,增强序列是一个不完美的肿瘤分级替代品,可以而且应该被挑战,以造福患者,降低成本,提高安全性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值