学龄儿童的创造性思维和大脑网络发展

 培养创造性思维一直是确保适应人类文明新挑战的前提。虽然一些替代性教育环境(如蒙特梭利教育)已被证明可以培养创造性技能,但我们尚不清楚它们如何影响学龄期儿童大脑机制的发展。本研究通过功能磁共振成像(fMRI)评估了75名蒙特梭利和传统学校的4-18岁儿童的创造性思维和静息态功能连接。我们发现,教学法显著影响创造性表现和潜在的大脑网络。与之前的研究一致,蒙特梭利学校的儿童在创造性思维测试中表现出更高的分数。使用静态功能连接分析,我们发现蒙特梭利学校的儿童突显网络内部功能连接降低。此外,使用动态功能连接分析,我们发现传统学校的儿童花更多时间处于一种以默认模式网络内部高度连接为特征的大脑状态。这些发现表明,教学法可能影响与创造性思维相关的大脑网络,尤其是默认模式网络和突显网络。鉴于这些结果对教育从业者的影响,还需要进一步的研究,如纵向研究来验证这些结果。本文发表在Developmental Science杂志。可添加微信号1996207406318983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,思影提供脑影像数据分析及课程,如感兴趣也可添加微信咨询)。

研究亮点:

- 未来几十年内,大多数管理职位都可能被淘汰,因此创造性技能被视为近期至关重要的能力。  

- 学校经历已被证明在创造力发展中起作用,然而,潜在的大脑机制仍有待深入研究。

- 75名来自蒙特梭利或传统学校的4-18岁儿童在行为层面完成了创造力任务,并进行了6分钟的静息态磁共振扫描。

- 我们独特地报告了教学法对功能性大脑网络影响的初步证据。

1 引言:

      我们生活在一个不断变化、日益复杂的环境中。为了应对不断出现的新挑战,适应能力至关重要。适应的一种方式是通过创造性思维,即产生新颖有用想法的过程(Sternberg & Lubart, 1996)。虽然创造性思维在童年时期不断增强(Eon Duval et al., 2022),但学校经历被证明可以培养其发展(Besançon & Lubart, 2007; Denervaud et al., 2019; Lillard & Else-Quest, 2006)。最近,人们对理解创造性思维的潜在功能性大脑网络过程越来越感兴趣。越来越多的神经科学证据表明,创造性思维涉及特定大尺度大脑网络之间的功能连接(Beaty et al., 2016; Beaty, Kenett et al., 2018; Beaty et al., 2019; Li et al., 2017)。然而,几乎所有这些研究都是在成年人中进行的,尚未探索这些大脑网络如何在儿童中发展,以及学校教学法在多大程度上影响它们。

      创造性思维在个人层面通过提高心理灵活性和意外事件管理能力,在集体层面通过在创新中的作用而有益(Runco, 2004)。最近的网络神经科学研究揭示了创造性思维过程中涉及的三个主要功能性大脑网络:默认模式网络(DMN)、执行控制网络(ECN)和突显网络(SN)(Beaty et al., 2016; Beaty, Chen et al., 2018; Beaty, Kenett et al., 2018)。

     DMN与涉及自发性和自我生成的思考(如心理漫游、心理模拟或社会认知)的认知任务有关(Smallwood et al., 2021)。它也参与创造性思维的想法生成(Beaty et al., 2014, 2020)。ECN与涉及认知控制(如工作记忆、关系整合以及任务集切换)的任务相关(Dixon et al., 2018),参与创造性思维的想法评估或精细化(Cai et al., 2016)。先前的研究表明,高度创造性的个体(在创造性思维测试中表现出高分的人)表现出DMN和ECN之间功能连接的增强(Beaty, Kenett et al., 2018)。

     在创造性思维期间,DMN-ECN的共同激活被认为是由SN(突显网络)中的灵活切换机制促进的。事实上,SN的主要功能是在多个刺激相互竞争我们的注意力时专注于一个刺激(Uddin et al., 2010)。在创造性思维的背景下,它对于在其他任务中在DMN和ECN之间切换很重要(Menon & Uddin, 2010)。SN突显网络被认为可以在DMN(默认模式网络)内的想法中识别候选者并选择最合适的。然后,这些想法被SN转发到ECN(执行控制网络),在那里它们被评估和细化(Beaty, Kenett et al., 2018)。ECN也可能作用于想法生成的机制,以评估和调整有用的想法,有时会抑制不独特的想法(Beaty et al., 2017)。这个前馈循环允许根据特定目标调整想法(Beaty et al., 2016)。总之,这些发现表明DMN、ECN和SN之间的相互作用对创造性思维能力至关重要。尽管在理解创造性思维的潜在神经过程方面取得了进展,但很少有研究调查它们的发展,以及它们对学校经历的敏感性。  

     在整个儿童时期,创造性思维遵循一个非线性的发展模式。早期稳定增长之后,在学龄期会出现起伏(Barbot et al., 2018)。虽然创造性思维与整个儿童期发生重大变化的执行功能高度相关(Benedek et al., 2018; Davidson, 2006),但学校经历也影响儿童的创造性思维。经历更规范化环境(即传统教学法)的儿童——主要是教师指导的课程、分数和同龄人竞争环境(Hayek et al., 2017)——在创造性思维测试中表现较差(Fleming et al., 2019)。相反,经历替代教学法的儿童,如蒙台梭利学校——儿童在多年龄合作班级中进行自我探索活动,没有分数——表现出更高的创造性思维技能(Besançon & Lubart, 2007; Denervaud et al., 2019; Lillard & Else-Quest, 2006)。这些研究提供了证据,表明学校经历可以影响创造性思维能力(Denervaud et al., 2021; Eon Duval et al., 2022),引发了关于潜在大脑过程的问题。然而,目前还没有研究将功能性大脑网络的成熟、创造性思维的发展和学校教学法联系起来。

      为了弥补这一空白,我们利用静息态功能磁共振成像(fMRI)数据和标准化创造性思维测量,研究了75名从小经历蒙台梭利(N=37)或传统(N=38)教学法的学龄儿童。我们的目标是探索年龄、创造性思维和潜在功能性大脑网络在静态和动态连接水平上的相互作用。静态连接分析允许对网络间和网络内活动进行全面调查(Patil et al., 2021)。然而,由于静态连接对大脑信号进行平均,掩盖了网络之间随时间的动态相互作用,我们还进行了动态功能连接分析。

      我们假设教学法在静态和动态层面上对功能连接有影响。更具体地说,我们预期:(1)蒙台梭利学校的儿童比传统学校的同龄人具有更高的创造性思维能力,复制了该领域以前的工作(例如,Besançon & Lubart, 2007; Denervaud et al., 2019; Eon Duval et al., 2022; Lillard & Else-Quest, 2006),这种影响反映在; (2)传统学校儿童的SN(突显网络)呈现出高活性,损害其与DMN(默认网络)和ECN(执行控制网络)等其他网络的切换活动,正如以前关于错误监控的工作所建议的(Denervaud et al., 2020); (3)这种高活性可能阻碍从DMN到ECN的灵活切换,表现为更高的DMN内和/或ECN内连接。

      据我们所知,这是第一项研究学校教学法如何影响支持创造性思维的大脑网络发展的研究。了解教学法如何在神经层面上影响学龄儿童的创造性思维过程,对旨在促进创造性思维的教育实践具有潜在影响。

2 材料与方法

2.1 被试

     在瑞士的合作学校招募儿童,并邀请他们到洛桑大学医院的放射科。2018年至2021年间,共有99名儿童参与了这项研究。纳入标准为年龄(4-18岁)、从学校课程开始就在蒙台梭利或传统学校就读,且无神经系统疾病史。参与者的法定监护人填写了书面知情同意书。当地伦理委员会批准了这项研究(CER-VD)。由于头部过度运动(n=8)、缺乏创造性思维测量(n=11)或由于牙套而干扰磁共振成像(MRI)扫描(n=5),共有24名儿童被排除,最终样本为75名儿童(4.6-18.0岁;9.84岁±2.63岁;43名女性)。在75名儿童中,37名儿童(4.6-18.0岁;9.69岁±2.79岁;19名女性)就读于蒙台梭利学校,38名儿童(5.2-15.2岁;9.98岁±2.49岁;24名女性)就读于传统学校。

2.2 人口统计学和组变量

      在瑞士,蒙台梭利学校只是私立系统。为了控制可能的选择偏差,收集了组变量,以检查两个教学法组(蒙台梭利、传统)的参与者在流体智力、社会经济背景、父母对教学法的兴趣以及家庭教育方式方面是否具有可比性(见下文)。

     使用瑞文标准推理测验(PM-47)(John & Raven, 2003)评估流体智力,该测验由36个矩阵组成,分为3组,每组12个矩阵。每个矩阵都有一个缺失部分。要求儿童从6个或8个选项中选择一个来完成矩阵(任务时长=15分钟)。将正确答案相加得到总分,范围为0-36分。

      通过在线或纸质问卷从父母那里收集社会经济地位、教育兴趣和养育方式:

     社会经济地位(SES):指导父母填写一份关于其教育和职业水平的表格(Genoud, 2011)。如果孩子处于双亲监护之下,则对每位父母给出的答案求和,然后取平均值。如果是单亲监护,则总和为最终得分。最高分为4分。

      教育兴趣:父母回答了三个关于他们对教育学和教育的兴趣的问题(例如,"你阅读有关儿童发展的书籍吗?")。使用每个答案的总和。最高得分为3分。

     养育方式:父母回答了四个关于家庭环境的问题(例如,家庭活动类型,享有绿地)。每个问题都被单独评分和标准化,最终得分通过对所有答案求和得出。得分越高,反映出家庭环境越丰富。最高得分为4分。

    使用Jamovi (https://www.jamovi.org)对两组(蒙台梭利、传统)的每个变量进行了多重t检验。最后,计算卡方检验以验证两组之间的性别比例是否具有可比性。

2.3 创造性思维评估

     结合文献和我们实验室最近的工作表明,融合思维测量在不同年龄段表现出较少的"峰值"和"低谷"(与发散思维相比),发展更加线性(例如,Eon Duval等人,2022年),我们认为这一测量是创造力的更好标志。此外,根据我们的经验,与发散思维相比,非常小的儿童(<6岁)更容易掌握融合思维。融合思维涉及为创造性问题产生单一解决方案(例如,整合对象以制作绘图),而发散思维涉及为开放式问题产生多种可能的解决方案(例如,根据给定的提示绘制几个不同的草图)。在这项研究中,使用创造力潜能评估(EpoC)量表(Lubart等人,2011年)中的标准化非语言任务测量了融合思维。要求儿童在10分钟内创作一幅绘画,整合至少8种抽象形状中的3种(例如椭圆形、三角形或正方形)。说明强调了创造性思维过程(即"尽可能有创意!")。每幅绘画由三名经过培训的评分者在从1(低创造力)到7(高创造力)的等级上进行盲评。评分标准基于形状的整合、最终绘画的独创性和讲故事。通过多个评分者的一致性百分比测量,三个独立评分者评估的评分者间信度良好(74%)。每幅绘画在评分者之间有三种不同的组合(即R1/R2、R1/R3、R2/R3)。如果两个评分者给出相同的分数,则得1分,如果分数不同则得0分。每幅绘画最多有3分。通过使用总和并除以组合总数来计算一致性百分比。

     对融合思维分数进行统计分析,使用t检验测试蒙台梭利学校儿童和传统学校儿童之间的统计差异。

2.4 fMRI数据采集

      在洛桑大学医院的生物医学成像中心(CIBM-CHUV)使用配备64通道头线圈的3T PrismaFit MR扫描仪(西门子医疗)采集结构和功能数据(图1a)。对每个受试者,使用MPRAGE(磁化准备-快速梯度回波)三维高分辨率各向同性T1加权序列采集结构数据(TR=2000ms;TE=2.47ms;208个切片;体素大小=1×1×1mm;翻转角=8°)。该序列作为脑分割和表面重建的基础。使用标准回波平面梯度回波序列结合同步多切片(SMS)成像技术采集功能数据,以优化时间分辨率。功能采集覆盖整个大脑(GRE 2.2×2.2×3mm,TR=500ms;TE=33ms;48个轴向切片;切片厚度=2.6mm;切片间10%间隙;翻转角=47°;视野[FOV]=224mm;SMS加速因子=8)。一个采集阶段持续6分钟,记录720个体积(volume)。为避免噪音不适,给参与者耳塞,为最大限度地减少头部运动,在耳朵周围放置泡沫垫。

图片

图1.分析流程示意图。

(a)结构和静息态数据采集。

(b)使用fMRIPrep 20.2.1进行成像数据预处理。

(c)使用GIFT工具箱对静息态功能磁共振成像(rs-fMRI)数据进行组ICA,并选择三个感兴趣网络(DMN、SN、ECN)的IC(成分)。这允许从体素活动生成空间图和时间过程。

(d)对所有儿童的平均时间过程执行静态功能网络连接(sFNC),以生成每个IC的空间图、时间过程频谱和FNC相关性。

(e)对每个儿童的整个时间过程执行动态功能网络连接(dFNC)。使用基于窗口的方法将信号划分为相同长度的小窗口,然后使用k均值算法将相似的窗口重新分组到簇中。该分析产生dFNC度量,例如停留时间(即参与者在每个脑状态中花费的时间/扫描量)。


2.5 fMRI数据预处理
      所有成像数据均使用fMRIPrep 20.2.1(Esteban等人,2019年)进行预处理(图1b),该软件基于Nipype 1.5.1(Gorgolewski等人,2011年)(见补充A)。管道的主要步骤包括将解剖图像与用于空间标准化的脑图谱(MNI152NLin2009cAsym)对齐、脑组织分割和表面重建。同时,对功能数据进行预处理以生成脑掩模并估计头部运动。最后,将功能图像与解剖图像进行配准,以通过叠加并在高分辨率脑图像上可视化结果,更好地定义结果的解剖位置。

      两名独立的研究人员对数据预处理前后进行了目视检查。使用独立成分分析校正(AROMA)进行运动伪影的自动去除对数据进行预处理,旨在改善运动校正。然后,使用帧间位移(FD)和连续差异图像的空间标准差(DVARS)度量作为严格的排除标准(平均值低于1.4)。

2.6 独立成分分析
     使用GIFT工具箱对静息态fMRI数据进行独立成分分析(ICA)(图1c)。首先,为了识别功能连接网络,根据该领域的先前研究(Damaraju等人,2014年,2020年;Li等人,2017年),将全脑体素活动划分为100个独立成分(IC)。其次,为了确保独立成分的可靠性,使用ICASSO运行Infomax ICA20次。第三,执行反向重建以使用GICA3算法估计每个受试者的空间图和时间过程(Calhoun等人,2001年)。最后,对时间过程执行额外的后处理步骤以去除噪声成分。这些步骤包括(1)去趋势线性、二次和三次趋势,(2)对头部运动进行多元回归,(3)去除检测到的异常值,以及(4)应用0.15 Hz截止频率的低通滤波。

2.7 感兴趣的网络

   基于该领域之前的研究(Beaty等人,2016年;Beaty,Chen等人,2018年;Beaty,Kenett等人,2018年),我们确定了与创造性思维相关的三个感兴趣网络:DMN(默认模式网络)、ECN(执行控制网络)和SN(突显网络)。对于DMN,确定了总共六个独立成分。对于ECN,确定了三个独立成分。对于SN,确定了总共五个独立成分。首先通过目视检查识别IC(独立成分),然后使用从Neurosynth平台(https://neurosynth.org/)检索到的模板进行相关性确认。Neurosynth是一个用于大规模、自动合成功能性磁共振成像(fMRI)数据的平台。它接受报告fMRI研究结果的数千篇已发表文章,对它们进行一些处理,然后生成如图所示的图像。Neurosynth可以执行特定术语或主题的自动元分析,提供相关脑区的激活图谱。研究人员利用它验证从ICA得到的脑网络成分。

2.8 静态功能网络连接

      为了研究三个感兴趣网络之间的关系,进行了静态功能网络连接(sFNC)分析(图1d)。该分析基于参与者在整个静息状态持续时间内每个IC中时间过程的平均连接性。

      此外,为了评估年龄、教学法和创造性思维对这些感兴趣的功能网络的影响,我们进行了多元协方差分析(MANCOVA)(Allen等人,2011年),并将年龄、教学法和创造性思维作为协变量。为了研究可能的交互作用,模型中还包括年龄X创造性思维、教学法X创造性思维和教学法X年龄。p值显著性阈值设置为0.5。然后,将用于计算低频波动分数振幅(fALFF)的空间图的t阈值、单变量检验的p阈值以及低频和高频限制分别设置为1.0、0.5和0.1-0.15Hz。对于单变量结果,应用了错误发现率(FDR)校正,阈值设置为0.5。

      进行了多元和单变量检验,生成了多个特征,如空间图、时间过程频谱和功能网络连接(FNC)相关性。这里,空间图是每个IC中连接强度的掩模;为空间图选择的体素是在所有受试者中显示出强烈激活的体素。时间过程频谱提供了在一个IC(独立成分)内整个静息状态的活动波动概览。功能网络连接(FNC)相关性是一个矩阵,显示所选IC之间的时间相关性。

2.9 动态功能网络连接
      执行动态功能网络连接(dFNC)以探索感兴趣的网络如何在整个静息状态扫描过程中相互作用(图1e)。对于这个分析,我们使用了基于每个参与者静息状态时间过程的滑动窗口方法。将参与者的时间过程划分为相同长度的小段。基于过去的研究(Beaty,Chen等人,2018年),应用了30 TR的窗口长度,高斯σ = 3 TR。新窗口从前一个窗口开始每1 TR启动,总共生成690个窗口。每个窗口是一个NxN相关矩阵,其中N对应于ICA期间选择的独立成分。

      生成的相关矩阵可能在每个参与者的静息状态和所有参与者中多次出现。使用k均值算法将窗口重新分组为簇或"状态",即感兴趣网络之间的重复相关模式。簇的数量设置为k = 5(Allen等人,2014年)。该算法使用城市距离功能进行了150次迭代。dFNC产生了五种不同的状态,然后通过几个指标评估这些状态,以比较参与者之间的状态差异:停留时间(在每个状态中花费的平均时间)、状态数(即在扫描期间遇到的不同状态的计数)、转换次数(即状态切换的计数)和行进距离(即不同状态之间距离的总和)。最后,对这些测量进行组统计(两样本t检验),以比较不同教学法(蒙台梭利与传统)的儿童,因为在sFNC分析中,年龄和创造性思维没有显著结果。

3 结果
      为了验证我们的组在智力和人口统计学变量方面的同质性,进行了统计分析,结果如表1所示。两种教学方法的儿童在年龄方面没有观察到组间差异(t(73)= -0.49,p = 0.63)。父母教养方式呈现出非显著趋势(t(72)= -1.95,p = 0.06),传统教育儿童(M = 3.38,SD = 0.40)高于蒙台梭利教育儿童(M = 3.19,SD = 0.43)。此外,Mann-Whitney U检验显示,流体智力(U = 661,p = 0.80)、教育兴趣(U = 598,p = 0.26)和社会经济地位(U = 680,p = 0.96)没有组间差异。最后,卡方检验显示性别比例没有差异(χ2(1,N = 75)= 1.61,p = 0.20)。因此,正如预期的那样,这些统计分析表明,在智力以及家庭和父母环境方面,两组是可比的和同质的。

表1. 蒙台梭利教育组和传统教育组的人口统计学数据。

图片

3.1 创造性思维任务

     学生t检验显示,两组之间存在显著的平均差异(t(73)= 3.96,p < 0.001)。与之前的研究一致(Besançon & Lubart,2007;Denervaud等人,2019;Lillard & Else-Quest,2006),蒙台梭利教育的儿童在聚合思维方面的得分平均高于传统教育的儿童(M = 4.92,SD = 1.64;图2a),而传统教育的儿童得分较低(M = 3.46,SD = 1.57)。

图片

图2(a)对聚合思维进行统计分析的结果原始数据。M =蒙台梭利教育儿童;T =传统教育儿童(*** p < 0.001)。

(b)年龄对聚合思维的影响。

      将年龄作为协变量加入分析,结果显示创造性思维总体上随年龄增长而提高(F(1,72)= 19.05,p < 0.001;图2b)。

3.2 群组独立成分分析

      接下来,我们使用ICA检查了整个学生样本的功能性脑网络。ICA揭示了典型的静息状态网络,包括DMN、ECN和SN。根据之前的工作,选择了14个成分作为感兴趣网络的一部分(Menon,2011;Menon&Uddin,2010;Supekar等人,2010)。对于DMN,成分代表左角回(lAG)、右角回(rAG)、后扣带回(PCC)和内侧前额叶皮层(mPFC)。对于ECN,成分代表右侧和左侧背外侧前额叶皮层(DLPFC)和后顶叶(PP)区域。对于SN,成分代表左前脑岛(lAI)、右前脑岛(rAI)和前扣带回(ACC)。

3.3 静态功能网络连接

      我们的群组分析首先计算感兴趣网络之间的相关性,使我们能够将相关模式与现有文献进行比较(图3)。我们发现组成DMN(0.80)和SN(0.38)的IC(独立成分)之间存在正相关,以及DMN-ECN(0.25)和ECN-SN(0.34)之间也存在正相关。在DMN-SN(-0.02)之间观察到轻微的负相关。然而,在ECN内部没有发现相关性或负相关性(0.00)。

图片

图3 代表SN的独立成分。

     使用MANCOVA评估了年龄、创造性思维、教学法及其交互项对独立成分的影响。经过FDR校正后,年龄和创造性思维没有显著结果。然而,学法有一个显著结果,即传统教育儿童的SN(突显网络)内部功能连接高于蒙台梭利教育儿童(T=2.73,p=0.01;补充材料B)。

3.4 动态功能网络连接

     然后,我们评估了整个学生样本的dFNC模式。使用滑动窗口方法确定每个被试在三个感兴趣的脑功能网络(即DMN、ECN、SN)之间的dFNC。

     由于教学法是sFNC分析中唯一的显著效应,因此在比较两种教学法的儿童时进行了dFNC。功能连接模式在每个被试中多次出现,以及在被试之间,使用k-means将模式分为5个不同的簇或"状态"。图4展示了五种不同的状态。

图片

图4.由滑动窗口方法生成的五个不同状态。在每个状态上方,报告了在该状态中花费的时间量(%)。DMN =默认模式网络;ECN =执行控制网络;SN =突显网络。对角线上的数字表示为每个网络选择的100个成分中的一个。

     第一种状态的特点是三个感兴趣的脑网络之间存在正功能连接,这一模式先前与创造性思维有关(Beaty,Kenett等人,2018)。

     第二种状态显示DMN和ECN内部更高的网络内功能连接,以及DMN和ECN之间更高的网络间功能连接,同时这些网络与SN呈反相关。

     第三种状态显示DMN内部高度的网络内功能连接,与内省认知过程一致(Andrews-Hanna,2012)。

    第四种状态先前与一种转换模式相关,揭示了一种亚稳态神经活动(Deco等人,2017),其特点是网络之间没有强相关,DMN和ECN内部存在轻微的网络内连接。

     第五种状态对应于一种与控制相关的模式,SN内部存在网络内功能连接,以及ECN和SN之间的网络间功能连接(图4)。

      对于每个被试,计算在每种状态下花费的时间作为平均停留时间。计算ANOVA以检验两组在每种状态下花费的时间是否不同。此外,进行两个样本t检验,比较蒙台梭利教育和传统教育儿童在每个状态之间的平均停留时间、状态数、转换次数和行进距离。

      在dfNC分析的所有状态中,教学法对状态3的停留时间产生了一个效应(图5)。这发生在"内省模式"(T = 2.73,p = 0.01),即DMN内部高度连接,传统教育儿童表现出增加的停留时间(M = 26.82,SD = 11.93)相比蒙台梭利教育儿童(M = 19.42,SD = 11.53)。有趣的是,从图5可以观察到,与传统教育儿童相比,蒙台梭利教育儿童的停留时间在各个状态之间相当稳定。为了检验这一观察结果,使用组内ANOVA比较每种教学法中状态的效应。这一分析显示状态与教学法之间存在交互作用的主效应(F(1,4)= 2.95,p < 0.021):蒙台梭利教育儿童的停留时间没有差异,而传统教育儿童的停留时间差异显著,表明他们倾向于在不同的脑状态中花费更多时间,而不是蒙台梭利学生。

图片

图5.传统教育儿童(蓝色)和蒙台梭利教育儿童(橙色)在五种状态下的平均停留时间。

统计比较揭示了蒙台梭利教育儿童在各状态之间停留时间稳定,传统教育儿童的停留时间差异显著。此外,他们在状态3(即DMN内部高度连接)中花费的时间比蒙台梭利学校的同龄人更多(* p < 0.05)。

     最后,在状态数(p = 0.56)、转换次数(p = 0.88)和行进距离(p = 0.76)方面,传统教育儿童和蒙台梭利教育儿童之间没有观察到组间差异。

     总之,动态连接分析扩展了静态连接分析——后者显示传统教育儿童在SN内部有更强的连接——通过额外揭示与蒙台梭利教育儿童相比,传统教育儿童在DMN内部有更强的连接。

4 讨论

     创造力已被强调为21世纪的关键能力(Davies等人,2017),这引发了关于创造力如何发展以及如何在学校培养创造力的问题(Denervaud等人,2019;Lillard & Else-Quest,2006;Lubart等人,2011)。研究已经很好地描述了成年人创造性成果背后的脑功能连接,特别是在DMN、SN和ECN内(Beaty,Chen等人,2018;Li等人,2017),但与创造性思维相关的脑网络的发展轨迹和学校教学法的影响仍然未知。本研究是第一项网络神经科学研究,旨在检验年龄、创造性思维和学校教学法之间的联系。虽然蒙台梭利教育的儿童在创造力任务上的得分一贯较高,但我们发现传统教育的儿童在SN内部功能连接增强,并且他们在"内省"模式(DMN内部活动)中花费更多时间。总之,这些结果表明教学法对SN的调节作用,SN(突显网络)是认知灵活性的关键开关,已知与创造性思维过程系统地相关。

      静态功能连接分析揭示了教学法的单一显著效应。值得注意的是,我们没有发现年龄和创造性思维对静态连接的独立影响。这很有趣,因为当儿童长大或变得更有创造力时,感兴趣网络之间的功能连接增加或减少是可以预期的。因此,年龄可能对三个感兴趣网络之间发生的变化不太敏感。另一个可能的解释是,对于儿童来说,其他网络比我们在这里检查的三个网络(DMN、ECN和SN)更相关,这应该在未来的工作中研究。

      先前的研究表明,蒙台梭利教育的儿童比传统教育的儿童表现出更高的创造性思维能力(Besançon & Lubart,2007;Denervaud等人,2019;Eon Duval等人,2022;Lillard & Else-Quest,2006),我们在这里复制了这一发现,表明教学法可能如何影响创造力。蒙台梭利学校倾向于跟随创造性思维在发展过程中的动态变化(Eon Duval等人,2022)。首先,儿童进行联想学习任务(Denervaud等人,2021),只有后来,才鼓励探索性任务,这种学习策略可能巩固他们的创造能力(Eon Duval等人,2022)。发展过程中学习过程中的这些不同步骤可能是蒙台梭利教育的儿童比传统学校的同龄人表现出更高的创造性思维技能的原因之一,尽管这一说法需要在未来的工作中进一步调查。

      静态功能连接分析显示,与蒙台梭利教育的儿童相比,传统教育的儿童表现出更高的SN(突显网络)内部功能连接。这种加强可能意味着,随着SN的发展,其与DMN和ECN的切换功能在传统教育的儿童中可能有所不同(Menon & Uddin,2010)。因此,SN内部功能连接可能导致DMN-ECN相互作用的减少,并影响创造性思维能力的发展。之前比较传统教育儿童和蒙台梭利教育儿童的研究报告了ACC连接(SN的亚区域)的差异,与错误监控(即面对意外事件)有关(Denervaud等人,2020),以及语义记忆组织的更大灵活性(Denervaud等人,2021)。可能是由同龄儿童在成人指导下对类似活动的竞争性环境以及为考试做准备过度招募了SN(即一次感知到太多信息是显著的)。相反,蒙台梭利教育的儿童花更多时间进行自主活动,与同伴讨论工作而没有时间限制,以获得理解(没有正式成绩)。这一观点证实了之前关于认知灵活性的研究,将SN(突显网络)作为一个调节DMN-ECN活动的切换枢纽(Menon & Uddin,2010)。SN的高活性持续影响认知灵活性(Uddin,2021),也许通过扩展,也影响创造性思维。

     最后,dFNC显示,与蒙台梭利教育的儿童相比,传统教育的儿童花更多时间处于"内省"脑状态,其特点是DMN内部活动增加。就创造性思维而言,DMN被认为参与想法生成的早期阶段,利用先前的知识和经验(Beaty等人,2016)。此外,DMN与自我相关和社会认知、记忆检索和经验高度相关(Ekhtiari等人,2016)。我们的结果表明,与蒙台梭利教育的儿童相比,传统教育的儿童可能过度使用在创造性认知中活跃的DMN,可能限制他们在DMN中的想法,与评估想法所需的控制相关区域的交流减少。这可以解释为传统教育儿童的创造力得分较低的原因可能与动态功能失衡有关(即花太多时间处于内省状态而不是执行模式)。

     此外,与蒙台梭利教育的儿童相比,传统教育的儿童在不同状态之间表现出显著差异,表明在从事特定任务时网络稳定性较差。

     重要的是,我们的结论基于静息状态数据,因此仍然是推测性的。需要基于任务的研究来理解传统教育儿童DMN内部活动增加的程度可能阻碍他们的创造性表现。奇怪的是,与传统教育的儿童相比,蒙台梭利教育的儿童似乎以更稳定的方式花时间处于不同状态,这可能反映了更好的从一种状态切换到另一种状态的能力。

     总之,我们的研究表明,传统教育的儿童的创造力相关脑网络流动性较差,可能是由于他们的SN相对于其他网络(如ECN和DMN)的强化。我们试探性地推测,传统教育儿童的想法(由DMN产生)可能不能有效地转发到ECN,这反过来可以解释为什么传统教育的儿童花更多时间处于内省模式。

     需要承认并在未来工作中解决几个局限性。首先,参与这项研究的蒙台梭利教育儿童来自私立学校,而传统教育的儿童来自公立学校。为了尽可能控制选择偏差,我们收集了有关认知能力和家庭环境的广泛信息。令人惊讶的是,传统教育的儿童往往比蒙台梭利学校的同龄人有更丰富的家庭环境。然而,我们必须注意,招募的传统教育儿童的父母表现出对教育和教学法的浓厚兴趣。尽管如此,其他因素也可能影响研究结果,例如父母在日常生活中的创造力或好奇心和动机水平。可能是更有创造力的父母寻求替代教育模式;他们可能更愿意接受新体验和好奇心。未来的工作应包括这些变量,以更好地研究创造力发展。此外,基于多项研究一致报告教学法对创造性思维的影响(例如,Denervaud等人,2019),即使在随机实验设置中(例如,Lillard&Else-Quest,2006),或与其他替代教学法相比(例如,Besançon&Lubart,2007),我们认为学校经历影响创造能力超出遗传(即从父母那里传递)。

     此外,我们通过基于绘画的任务评估了聚合性思维,而没有考虑语言创造力。目前尚不清楚口头聚合性思维是否会像我们发现的基于绘画的创造力那样对功能连接产生类似影响。然而,我们进行了一项口头任务试点,发现由于语言和抽象能力不如年长儿童发达,年幼儿童存在重要困难。尽管存在这些局限性,我们的发现与当前对创造性思维的认识一致,特别是在网络神经科学文献方面。我们希望我们的横断面结果将与纵向数据相结合,这是未来研究的关键下一步。

     这项研究揭示了SN在发展过程中创造性思维过程中的重要作用及其对教学法的敏感性。过去十年强调执行功能技能,尤其是在当前的传统学校(即改进作业、死记硬背或考试等执行活动)。然而,我们的研究表明,在整个学校年代,SN(突显网络)对创造性认知具有更大的重要性和敏感性。因此,我们建议教育实践以自我相关经验(即动手实践、跨学科活动)和社会多样性为目标,而不是执行任务,以支持SN功能发展。这种方法已经存在于蒙台梭利教学法中,在高度多样化的社会环境中优先考虑合作和自我探索。这种方法似乎在行为和大脑层面成功地培养了创造性思维。我们希望这项工作将激发更多朝这个方向的工作,因为它提出了许多有待探索的新问题。

如需原文及补充材料请添加思影科技微信:1996207406318983979082获取,如对思影课程及服务感兴趣也可加此微信号咨询。另思影提供免费文献下载服务,如需要也可添加此微信号入群,原文也会在群里发布,如果我们的解读对您的研究有帮助,请给个转发支持以及右下角点击一下在看,是对思影科技的支持,感谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值