脑网络分析:多变量分析方法概述

 尽管旨在将大脑作为复杂系统进行分析的神经影像学研究取得了爆炸性增长,但仍有关键的方法学空白需要解决。目前用于分析大脑网络数据的大多数工具本质上是单变量的,并基于先前技术的假设,这些假设并未直接涉及大脑的大规模和复杂数据。虽然基于图论的方法显示出巨大潜力,但开发原则性的多变量模型以解决图论方法的固有限制(例如其对网络规模和度分布的依赖),并允许评估多个表型对大脑的影响和模拟大脑网络的进展相对滞后。尽管已经有一些研究致力于开发多变量框架以填补这一空白,但在缺乏“金标准”方法或指南的情况下,为每项研究选择最合适的方法仍是这一多学科领域中的研究人员面临的另一重大挑战。在这里,我们简要介绍了脑网络分析中的重要多变量方法,主要分为两类:数据驱动方法和模型驱动方法。我们讨论了这些方法是否/如何适合于检查连接性(边级别)、拓扑结构(系统级别)或两者兼具的情况。本文将有助于根据网络类型、受试者数量和包含的大脑区域数量,以及对连接性、拓扑结构或两者的兴趣,选择合适的多变量方法。本文旨在向来自不同背景的研究人员提供易于理解的指南,重点关注脑网络研究中的应用,尽管这些方法也可能适用于其他领域。本文发表在BRAIN CONNECTIVITY杂志。可添加微信号1996207406318983979082获取原文及补充材料,另思影提供免费文献下载服务,如需要也可添加此微信号入群,思影提供脑影像数据分析及课程,如感兴趣也可添加微信咨询)。

影响声明

      正如美国国立卫生研究院所指出的,如果开发出新的分析工具,并广泛应用于研究中,丰富的生物医学数据可以极大地提高我们对人类健康的了解。在将大脑视为复杂系统进行分析时,一个主要挑战是开发简洁的多变量方法,尤其是在现有方法中选择最适合研究变量的那一个。这项研究提供了对最重要多变量方法的综述,以帮助根据每项研究的所需变量选择最适合的方法。

关键词:大脑网络;连接性;数据驱动;模型驱动;多变量

引言

      快速发展的神经影像技术提供了详细的大脑数据,结合计算机处理这些数据日益增长的计算和存储能力,为将大脑视为一个真正的复杂系统进行探索提供了独特的机会。这为理解正常大脑的工作方式以及在疾病(如阿尔茨海默病,AD)导致不可避免的痛苦和经济负担的最终阶段之前识别其引起的异常提供了前所未有的机会。

       这激励了大型研究项目的建立,以提供丰富的大脑结构和功能数据集,例如:人类连接组项目(HCP)(Van Essen等,2013)和英国生物银行研究(Miller等,2016),以及众多聚焦于提供疾病数据库的小型项目,如注意力缺陷/多动障碍(Bellec等,2017)。然而,在真正革命性地理解大脑及其异常之前,适当地将大脑建模为复杂系统的关键方法学空白仍需填补。

       尽管基于图论的方法已成为填补这些空白的极其有用的工具,提供了大脑系统级的视角(Bullmore和Sporns,2009;Rubinov和Sporns,2010),但开发经过验证的多变量方法以提供可靠的框架来测试关于局部/全局脑网络的假设并将其与表型相关联,同时考虑大脑的复杂性,仍然相对滞后。另一个更为关键的挑战是在过去二十年引入的现有多变量方法中选择最适合的方法。

       多变量模型在神经影像数据中的应用主要局限于特定分析,单变量方法仍然主导该领域。例如,广义线性模型(GLM)仍然是功能性磁共振成像(fMRI)研究的基石,用于识别大脑活动与认知任务之间的关联(Lindquist,2008)。尽管GLM提供了包括各种协变量(如生理干扰协变量和人口统计信息(如年龄、性别等))和每个个体的多次观察的框架,因此本质上可以是多变量的,但在神经影像研究中它们通常以单变量方式使用。

       在这种情况下,它们用于分别将每个体素与所需协变量相关联,并假设所有体素是独立的。即使是更先进的方法,通过共同分析一个区域内的体素(De Martino等,2008),或根据其空间权重结合邻近体素(Zhuang等,2019),也尚未适用于脑网络数据,因为它们从根本上是为基于体素的激活检测研究开发的,不适用于复杂的(如多层次的依赖结构和复杂的补偿机制)和大规模的脑网络数据。

       尽管在基于网络的脑分析中使用图论测量显示出了巨大潜力,但它也存在重要的限制。例如,在缺乏适当的零模型的情况下,测试图论测量的显著性是一个重要挑战(Fornito等,2013),并且由于依赖于网络规模、密度(为选择适当的阈值带来进一步的挑战)和度分布,比较个体或研究人群的网络受到限制(Fornito等,2015)。

    正如Simpson和Laurienti(2016)所指出的,基于网络的分析是连接性分析的一个独特子领域,尽管这两个术语通常被错误地当作同义词使用。具体来说,尽管由于健康或认知状况不佳,大脑的连接性可能会改变,但网络结构或拓扑可能会由于大脑的补偿机制及其建立新连接以保持组织一致性的能力而保持不变。考虑到它们之间的区别,特别是关于大脑系统组织建模的区别,对于开发有用的分析工具至关重要。因此,我们在描述不同多变量工具时考虑了这种区别,并解释每种方法更适合于连接性分析、网络分析还是两者兼具。

       鉴于这一多学科领域的研究人员来自不同背景,找到适合他们分析的多变量框架可能是一个挑战,因为这些方法可能存在于其他学科的文献中。对过去几年引入的有前景的多变量方法进行综合调查将极大地帮助这一领域的研究人员。然而,此类综述尚缺乏,现有的很少主要集中在数据驱动方法上(McIntosh和Misic,2013)。我们将综述最常用的多变量方法,分为两类:多变量数据驱动方法和多变量模型驱动方法。

脑网络和图论测量

        我们应该注意到,“脑网络”是一个广义的术语,因为它涵盖了从单个神经元组成的网络到以数百万神经元作为单一节点的更大规模的感兴趣区域(ROIs)组成的网络。在本文中,我们使用体素和图谱ROIs作为节点。此外,脑网络可以从解剖学或功能性数据中得出,因此网络内的连接代表了非常不同的关系,尽管大多数分析方法对所使用的网络类型是不区分的。我们还应该注意到,本文重点讨论的是静态功能网络,其中关联是在整个数据采集时间内测量的。

      近年来,动态网络分析(在非常短的时间间隔内测量关联)越来越受到关注。Lurie等人(2020)的最新研究对动态脑网络分析进行了很好的综述。

       图论测量已成为脑网络研究的基石,因为它们提供了关于大脑复杂拓扑性质的丰富信息。图论测量本质上被认为是多变量的,因为它们允许超越单个连接,提供关于大脑系统相互作用的信息。然而,它们的应用主要限于单变量的单一测量比较,这些测量仅描述了脑网络的某些局部或全局特性。

       尽管由于在捕捉大脑某些系统特性和结果解释性之间的良好权衡,这种方法可能仍是许多研究的最佳选择,但一种允许利用这些丰富测量提供的大量信息的方法可能会提供关于大脑系统相互作用的更高层次的见解。为了更好地解释本文详细讨论的单变量和多变量方法之间的区别,我们首先讨论连接性方法和网络方法之间的区别。

基于连接性和网络的方法

      连接性和网络方法之间的细微区别不容忽视,因为它对选择适当的多变量分析方法有重要影响。作为一个复杂的多尺度系统,大脑内在的系统组织赋予了我们大脑许多功能能力(Bassett和Gazzaniga,2011;Bullmore等,2009)。大脑的补偿机制允许在不良健康或认知状况导致连接丧失时,通过建立新连接来保持组织一致性和功能能力。因此,不同群体或个体之间的大脑连接性可能不同,而他们的网络结构可能相似。这使得考虑连接性和网络分析之间的差异更加重要。为了更好地比较连接性和网络方法之间的差异,我们将用于脑网络研究的连接性方法分为三大类:关联方法、建模方法和分区方法。然而,我们注意到这三类并不是互斥的,任何组合,特别是关联方法与其他两者的组合,可能在单一研究中使用。

      关联方法通常用作任何网络研究的起点,用于构建大脑的结构/功能网络,因此通常与建模或分区方法或基于网络的方法结合使用。建模方法通常使用参与者或研究人群之间的边缘大规模单变量比较,并进行多重比较校正(Zalesky等,2010),而分区方法通常使用数据驱动方法,如独立成分分析(ICA)和基于聚类的方法。

      成对互相关是功能连接性中最常用的关联测量,特别是在血氧水平依赖(BOLD)fMRI研究中。成对互相关通常用于脑电图(EEG)研究,因为它具有更高的时间分辨率,因此频率范围更广。在组合时间-频率分析中,基于小波的方法用于将信号(即ROI/体素时间序列)分解为表示所需频带的信号,从而在所需频带中测量关联。基于小波的方法广泛用于fMRI、EEG和脑磁图(MEG)研究,并且与互相关和互相干相比,它们在fMRI研究中提供了更可靠的长记忆时间序列估计(Achard等,2008;Bullmore等,2004)。

      互信息和广义同步是其他较少用于脑网络研究的关联测量的例子。结构连接性研究的关联方法通常通过确定性(Basser等,1994)或概率性纤维追踪(Behrens等,2007)方法测量不同脑区之间的纤维数量。

      前述的关联方法在测量两个区域之间的线性/非线性关联时不考虑其他脑区的信号,通常被视为单变量或双变量关联方法。然而,为了将大脑作为复杂系统建模,使用考虑其他脑区信号的多变量方法可能更可靠(Salvador等,2020)。部分相关可以被视为功能连接性研究中量化关联的多变量方法,因为它在调整所有其他区域信号后测量两个信号之间的相关性。

       尽管部分相关广泛用于脑网络研究,并且在识别直接连接方面特别有用(Smith等,2011),但它存在两个重要限制:它是一种计算要求高的方法,用于构建具有大量区域的网络,而且由于时间序列不一定呈正态分布,应用这种方法可能导致误导性结果。几项研究试图解决这些限制。Li和Wang(2015)引入了一种方法,使用自适应稀疏表示(ASR)方法(Lu等,2013)来构建功能网络。该方法通过同时考虑每个区域与所有其他区域的线性关系,考虑到其他区域的影响,已被证明优于部分相关,而无需时间序列呈正态分布。

      Aggarwal等(2017)介绍的基于多变量向量回归的连接性(MVRC)方法,在估计两个区域之间的关联时考虑到其他脑区的影响,但与基于ASR(自适应稀疏表示)的方法相比,速度要快得多。然而,由于其简单的实施和多变量方法的计算成本,成对互相关等双变量关联方法仍然被广泛使用。

       尽管关联建模方法通常限于边的大规模单变量比较,但大多数多变量数据驱动方法属于分区方法,其中脑连接性数据被划分为具有不同内外连接性特征的有意义成分或区域集群。

       基于网络的方法用于分析从所有脑区对之间估计的连接性中得出的完全构建的脑网络(无论使用何种估计方法)。网络方法可分为描述性方法和建模方法两大类。描述性方法使用图论测量,如度或全局效率,提供关于脑网络系统组织的信息(例如,全局效率可以衡量网络中的信息流效率)。网络建模方法提供了测试这些描述性测量及其与表型特征相关性的假设的方法。

      然而,正如连接性方法一样,大多数网络建模方法依赖单变量方法,通过t检验或类似ANOVA技术粗略地比较单个图测量(例如,全局效率)。尽管通过描述性图测量检查脑网络可能仍然是某些研究的最适当方法,因为它在捕捉数据复杂性和结果解释性之间提供了平衡,但正如Simpson和Laurienti(2016)所指出的,脑的系统组织最好通过多变量方法建模,以利用各种描述性测量提供的信息,这些测量量化了脑网络系统特性的不同方面。网络建模方法将在随后的部分中详细调查。

单变量方法

      脑网络通常通过对单个连接在不同群体间的大规模单变量比较或将表型与单个连接逐一关联进行分析。这种广泛使用的方法可能导致信息和洞察力的显著丧失,并产生相互矛盾和/或误导性的结果,因为它未能将整个大脑及其系统特性纳入分析(Simpson等,2013)。更具体地说,单变量方法通过将大脑降解为其组成部分并独立分析它们,对大脑施加了一种还原主义的视角,尽管作为一个复杂系统,大脑的真正性质只能在利用整个大脑相互作用的知识时才能理解(Bassett和Gazzaniga,2011)。

      单变量方法在将表型特征与大脑连接关联时忽略了其他连接的同时贡献(Cole等,2010),并通过将研究的子网络与整体隔离并将其视为独立元素,排除了其他子网络的同时贡献或影响(Bahrami等,2019a)。这导致无法解释大脑中的复杂未知、未预料到或补偿机制。

      单变量方法在建模大脑的网络数据时也有重要的技术限制:(i) 正如Simpson等(2013)详细说明的那样,成千上万到数百万的连接以及节点网络测量应该被建模为每个受试者的大脑网络数据中的相关元素,但单变量方法无法解释这种内在的依赖结构。可以在多变量方法中使用平均值来解决依赖问题,但这会导致丧失大量信息并忽略个体间的变异性(Mueller等,2013);(ii) 单变量方法无法同时将多个表型特征与大脑连接组或拓扑结构关联起来,无法解释内源性(大脑的内在属性,如脑区之间的空间距离)和外源性(例如,年龄、性别等)混杂效应的来源。

      这限制了单变量方法在匹配人群的研究中使用,在这些研究中,需要多次独立分析来控制混杂效应并检查多个表型对大脑的影响。这是一个关键的限制,因为获取脑网络数据是一项艰巨的任务,因此匹配人群并非总是可行的选择,而且单变量方法在确定主导协变量的层次结构时失败,因为每个效应都需要单独分析;(iii) 单变量方法需要对大脑网络研究进行成千上万到数百万次统计检验。例如,一个有268个区域的网络需要超过35,000次检验来比较所有连接,这个数字在体素级网络中会大幅增加。

       大量的统计检验导致非常高的I型错误率,要求严格的多重比较校正策略,这可能导致效能的损失(Chumbley和Friston,2009)。图论测量通过提供工具来评估作为复杂系统的大脑的系统级相互作用,超越了单个连接比较,从而对健康和疾病中的大脑组织提供了深刻的洞察。然而,即使是那些试图描述大脑复杂系统级特性的图论测量的使用,仍然主要局限于单个图测量的单变量比较(图1)。

图片

图1单变量方法分析脑网络的示意图。该图说明了比较两个样本群体研究中脑网络最常用的单变量方法,分别标记为组1和组2。脑网络通过对单个连接的大规模单变量比较或跨群体网络测量的单变量比较来进行比较。在此图中,显示了组1和组2网络中AAL图谱(Tzourio-Mazoyer等,2002)中两个区域之间的一个样本连接(ROI 7: SFG和ROI 61: IP之间的连接)。此处,连接强度用厚度和颜色表示。此外,对于AAL图谱中的ROI 7,即额上回,显示了四个网络的两个样本网络测量,包括度和聚类系数。此节点的大小和颜色代表其度。度是从连接到该节点的边的权重总和计算得出的,聚类系数是使用该节点邻居之间形成的三角形数量相对于所有可能三角形数量计算得出的。然后将个体连接强度和节点(或全局)网络测量输入平均和单变量方法以比较群体。本文详细讨论了这种方法的含义。AAL,自动解剖标记;IP,顶下小叶;ROI,感兴趣区域;SFG,额上回。

       不同群体间图测量的单变量比较对于许多研究仍可能是一种有益的方法,因为可以以可解释的方式评估大脑系统级属性的不同方面。在过去几年中,许多研究投入了大量精力开发多变量建模框架,以解决前述单变量方法的一些限制。然而,大多数研究都集中在解决单变量方法相对于特定神经影像数据的某些限制。本文综述了文献中使用的当前多变量方法,重点是它们在脑网络数据中的应用。

多变量方法

      一个理想的多变量模型应通过提供以下框架来解决脑网络数据建模中的关键限制:(i) 将大脑作为一个整体建模,而不是将其简化为平均连接性或图测量;(ii) 在多个层次上建模依赖结构;(iii) 在整体背景下建模大脑子网络,而不是将它们与整体隔离,即考虑它们与其他脑区的相互作用以及其他子网络内部相互作用的影响;(iv) 评估多个表型变量对脑连接性和拓扑结构的影响从而确定解释脑连接性和拓扑结构的重要变量(或其层次结构);(v) 控制内源性和外源性混杂效应的来源;(vi) 允许分析由不同神经影像或神经生理数据构建的功能或结构网络;(vii) 提供可解释的结果;(viii) 作为一种计算上可行的方法,适用于较大数据集和专注于高分辨率脑网络分析的研究(例如,体素级脑网络研究)。

       用于分析脑网络数据的多变量方法范围从简单的连接性方法到考虑其他区域影响的改进方法,再到更复杂的连接性-网络方法,这些方法在建模多分辨率依赖结构时考虑复杂的拓扑特性,但通常以解释性的代价为代价。在这里,我们将综述两大类多变量方法:数据驱动方法和模型驱动方法。

多变量数据驱动方法

      大多数数据驱动方法旨在识别大脑网络数据中不同的连接模式,通常无需预先假设连接-表型或连接-认知任务的关联。数据驱动方法属于连接分区方法类别(参见连接和网络基础方法部分)。在某些神经影像数据或特定情境下,数据驱动方法可能仍然是现有的最佳方法。

      更具体地说,在由于复杂的连接/拓扑-表型关联或复杂的刺激而难以定义良好假设的研究中,像ICA这样的数据驱动方法可能是最佳选择,因为它们不依赖于预定义的假设,因此在识别复杂关联或表型效应时可能更具揭示性。此外,通过各种软件包或简单的实现程序,数据驱动方法通常对广泛的研究人员更为易用。与单变量方法相比,它们还提供了更可靠的结果,因为它们结合了整个大脑连接集。接下来,我们将描述最常用的数据驱动方法。

独立成分分析 (ICA)

       研究功能性脑网络最常用的数据驱动方法是独立成分分析(ICA)(Beckmann和Smith,2004;McKeown等,1998)。ICA作为一种连接性分区方法,是一种盲源分离方法,它将数据(例如,一组fMRI时间序列)分解为最大独立成分。功能性网络中的独立成分可以解释为具有相似活动模式的子网络,这些模式对应于认知任务或神经功能,甚至是生理或影像伪影。更具体地说,设

图片

表示功能性神经影像数据的时空数据矩阵(例如,𝑋可以是一个fMRI研究中的数据矩阵,具有𝑝个体素/ROI和𝑛个时间点或扫描)。那么,ICA可以将这些数据建模如下:

图片

其中,

图片

是由混合矩阵

图片

加权的包含𝑟个独立成分的源矩阵。在空间ICA(更常用于fMRI研究)中,假设𝑆的行是独立的。与单变量方法不同,ICA利用整个数据中的信息生成相似连接性的模式(McIntosh和Misic,2013),并在将混合的脑信号解离为生理、神经和影像伪影信号的潜在成分方面显示出了巨大的潜力。

    引入了多个原始ICA框架的扩展,用于分析群体受试者的数据(Beckmann和Smith,2005;Calhoun等,2009;Calhoun等,2001),这导致使用基于ICA的方法分析健康和疾病中的功能性脑网络的显著增加。ICA已被证明是提取静息态或无任务网络的有效工具(Damoiseaux等,2006),并用于去除随机噪声、由呼吸和脉搏信号引起的生理噪声以及fMRI研究中的头部运动伪影(Pruim等,2015)。

     然而,这种方法计算密集,解释成分并不总是直截了当的。即使是为了降噪目的,视觉检查成分也是必要的(Power,2019)。而且,最重要的是,它仅限于识别相似活动模式(即连接性研究),不能用于旨在检查大脑更复杂拓扑性质的研究。

应用

      在早期但被高度引用的研究之一中,Greicius等(2004)使用ICA和fMRI数据区分轻度AD患者和对照受试者。他们使用ICA测试默认模式网络(DMN),一种已显示在各种认知过程中被激活的脑网络(Smallwood等,2021),在轻度AD患者中是否在一个简单的感觉运动处理任务期间功能性破坏。结果表明,虽然在对照受试者中,包含海马和下层内嗅皮层的区域在双侧DMN成分中(由ICA检测到),但在轻度AD患者中,它们仅在右半球观察到。

      许多其他研究使用基于ICA的方法识别大脑的异常,以及用于许多其他应用,如数据缩减和噪声消除。Calhoun和Adali(2012)的工作很好地综述了过去十年中这种方法在各种神经影像数据中的理论和适用性。

实现和属性

      两个广泛使用的应用ICA的软件包包括:MELODIC(多变量探索性线性优化到独立成分中),其在FSL中实现,以及Group ICA Toolbox(GIFT)。ICA通常可以满足多变量方法部分中描述的属性i、vii和viii。

主成分分析 (PCA)

      主成分分析 (PCA) 是另一种多变量数据驱动和连接性分区方法,类似于 ICA,因为它将脑网络数据分解为可以解释为具有相似活动模式的子网络的成分。然而,与 ICA 不同,PCA 将数据分解为捕捉数据变异性的非相关成分。PCA 通常通过对时空数据矩阵(例如之前描述的 𝑋X)进行奇异值分解 (SVD) 获得。对于

图片

的 SVD(奇异值分解),我们将有:

图片

其中

图片

(左奇异向量)和

图片

(右奇异向量)是单位矩阵

图片

,而

图片

是包含𝑋奇异值的矩形对角矩阵。然后可以通过𝑋和V 或

图片

来获得主成分。

      PCA 比 ICA 计算成本低,但也存在类似的局限性。此外,代表不同或专门子网络(具有相似活动模式)的连接模式之间的独立性假设对于神经影像数据来说是一个更强的假设,这导致 ICA 在识别连接模式方面的应用比 PCA 更广泛。然而,PCA 仍然是缩减大型神经影像数据集(包含成千上万个体素)大小的有用工具,然后再将它们用于其他分析方法。

     PCA 被证明在使用其他方法(如 GICA(Smith 等,2014))之前作为数据缩减技术特别有用,或作为从脑网络数据中提取特征用于分类的技术(Caprihan 等,2008;Lopez 等,2011)。

应用

     在最近的一项研究中,Amico 和 Goñi(2018)使用 PCA 从功能连接组数据中最大化个体指纹。使用来自 100 名无关受试者的 fMRI 数据,他们首先为每个人构建功能连接矩阵;然后在组合的连接矩阵(向量化并堆叠)上使用 PCA 提取前 M 个主成分,即前 M 个正交连接模式;最后使用提取的成分重建每个人的功能连接矩阵。使用不同数量的成分(M),他们表明,当用最佳数量的成分重建连接矩阵时,全局和边水平的连接指纹的可识别性达到最大。

实现和属性

     PCA 及其变体已在多种主要编程语言中实现,包括:Matlab(函数:pca),R(函数:prcomp,来自 factoextra 包的 pca),和 Python(来自 scikit-learn 模块的 PCA)。然而,为了可视化结果,可以使用专门为可视化脑网络开发的其他软件包,例如 BrainNet Viewer(Xia 等,2013)。约束主成分分析 (CPCA) 是一个基于 PCA 的工具箱,专门用于分析 fMRI 脑网络。与 ICA 一样,PCA 也可以满足多变量方法部分中描述的属性 i、vii 和 viii。

典型相关分析 (CCA)

     典型相关分析(CCA),由Hotelling(1992)引入,是一种强大的数据驱动多变量方法,也被用于根据多个期望表型检查大脑的网络数据,为识别大脑网络数据和期望表型中的共同变异来源提供了框架(Wang等,2020)。

       CCA可以被视为PCA的扩展,区别在于PCA识别的是在单个数据集中捕捉最大变异的连接模式(例如,在fMRI研究中,X作为时空数据矩阵),而CCA识别的是在两个数据集(例如,X和一个包含行为结果的数据集)之间捕捉最大变异的模式。因此,CCA可能是检查脑连接-表型关联或多种类型神经影像数据(多模态神经影像研究)关联的更强大工具。

      CCA通过检测在两个数据集中具有最大相关性的变量的新集合,识别大脑网络数据和期望协变量集之间的共同变异来源及其关联。具体来说,设

图片

表示单个参与者的连接矩阵,表示扩散张量成像(DTI)研究中的结构连接,或从计算数据矩阵

图片

的所有行(即,体素/ROI时间序列)之间的皮尔逊相关获得的相关矩阵。

       此外,令

图片

表示一个矩阵,它包含了 m 个参与者的连接矩阵,其中每一行代表一个参与者的向量化连接矩阵 [当 W 是对称矩阵时,l = p(p-1)/2,例如 fMRI 数据集;否则 l = p²]。然后,如果

图片

表示一个矩阵,它包含了所有 (m) 个参与者的 k 个所需变量(例如,表型测量、年龄、性别等),则 CCA 将通过最大化

图片

图片

之间的相关性来确定典型系数

图片

图片

,其中 u 和 v 分别是由 a 和 b 加权的 Y 和 Z 中变量的线性组合(即 u = Ya,v = Zb)。因此,我们将有:

图片

     其中

图片

图片

分别是 u 和 v 的标准差,

图片

是 a 和 b 之间的协方差矩阵,

图片

图片

分别是 Y 和 Z 的协方差矩阵。

     皮尔逊相关和普通多重回归分别允许检查一对一和多对一关系,而CCA允许检查多对多关系,这在分析复杂网络数据时非常有用(Wang等,2020)。这促进了CCA技术的广泛应用,特别是稀疏CCA(Witten等,2009),在识别脑网络与疾病表型、认知或行为反应之间关系的研究中。

     尽管广泛使用,基于CCA的方法计算成本高,解释结果并不直截了当,并且如Wang等(2020)所详细说明的那样,如果受试者数量不足,例如接近期望协变量的数量,CCA会在提供唯一解决方案时遇到问题。此外,与基于ICA的方法一样,该方法的应用仅限于连接性概况。

应用

       CCA在识别连接模式与大量期望变量之间的假设关系方面特别有用,正如Smith等(2015)所展示的那样。在这项研究中,他们使用CCA检查功能连接组与280个行为和人口统计测量之间最重要的关系。他们发现了生活方式、人口统计和心理测量之间的有趣的正-负关系模式,其中“积极”的受试者特征(如教育、智商等)与连接模式呈正相关,而“消极”的测量与连接模式呈负相关。

实现和属性

       与PCA一样,CCA已在各种编程语言中实现,如Matlab(函数:cancorr),R(函数:cancor,来自CCA包),和Python(函数:CCA,来自scikit-learn模块),并且可以使用相同的可视化工具将结果投影到大脑空间。CCA通常可以满足多变量方法部分中描述的属性i、iv、v、vi和vii。然而,识别确切的成分(子网络)可能并不总是直截了当(属性vii),并且这种方法计算成本高,使其不适合受试者数量众多的研究或具有大量ROI的脑网络研究。

基于聚类的方法

      一些多变量数据驱动方法使用聚类方法来识别连接模式。总体而言,谱聚类(Craddock等,2012;Gupta和Rajapakse,2020)和层次聚类(Cordes等,2002;Wang和Li,2013)是识别大脑连接模式的更流行的聚类方法。我们简要描述这两种方法。

       谱聚类通过图划分方法识别连接模式。具体来说,设

图片

表示连接矩阵(个体/群体平均值),代表p个区域之间的结构/功能连接,𝐺表示𝑊的图,其中

图片

图片

分别表示顶点和边,𝐷,

图片

表示对角度矩阵,让 L = D - W 表示图 G 的拉普拉斯矩阵。G 通常使用流行的归一化割集或 Shi-Malik 算法(Shi 和 Malik,2000)进行划分。该方法首先推导出归一化的拉普拉斯矩阵,

图片

表示为

图片

(通过求解方程

图片

),然后通过对与 L 的前 k 个最小特征值相关的 k 个特征向量组成的矩阵进行 k-means 聚类,将数据聚类为 k 个连通性模式。

      层次聚类通过基于距离的算法将具有相似活动的区域的聚类识别为连通性模式。更具体地说,让 X = {X_i | i = 1, 2, ..., p} 表示一个由 p 个脑区信号/时间序列组成的矩阵。最流行的方法使用以下步骤对 X 进行聚类:(i) 将每个 X_i 分配到自己的聚类中;(ii) 计算所有聚类对之间的距离(例如,欧几里得距离),并合并两个最相似的区域;(iii) 重复步骤二,直到只剩下一个聚类。

应用

       在最近的一项研究(Gupta和Rajapakse,2020)中,使用了迭代谱聚类框架来识别个体和群体级别的大脑模块。使用来自HCP研究的589名受试者的fMRI数据,这项研究首先通过迭代共识谱聚类为每个人导出功能模块(/连接模式),然后通过最小化共识成本获得群体级别的连接模式。该研究中使用的聚类方法允许在识别连接模式时结合多个扫描,从而减少使用单个扫描或跨个体数据平均带来的潜在偏差。基于聚类的方法也广泛用于分类目的。此外,基于聚类的方法通常首先尝试结合其他脑区的影响,通过多变量关联测量(如部分相关)识别脑区之间的关联,和在前面引用的关联方法部分中描述的更高级方法;例如,在Aggarwal和Gupta(2019)中使用MVRC(多变量向量回归的连接性)。Aggarwal和Gupta(2019)首先生成了一个群体级别的功能脑网络,而不是跨个体网络平均。然后,该研究通过对生成的群体级别功能网络进行迭代谱聚类方法识别功能子网络。这种方法允许确定每个受试者在解释群体级网络中的权重,更重要的是,通过同时利用整个个体网络集合中的信息,而不是跨已计算的个体网络平均,生成群体级代表网络。

      谱聚类是一种强大的方法,适用于旨在识别高度专业化子网络的研究,其中子网络之间的相互作用最小,特别是当对簇或子网络数量有良好了解时。换句话说,当研究主要集中在识别专业信息处理和功能分离时,由于其基础假设及其在识别空间分布和不规则簇方面的能力,可以使用谱聚类。

       然而,该方法的计算成本高于层次聚类,并且需要先验确定簇(子网络)的数量。层次聚类通常是一种更快和更灵活的方法,通常可以在多个分辨率上提供对脑网络结构的良好洞察。这使其成为旨在分析大脑子网络层次结构的研究的适当方法,每个簇内进一步有子网络。此外,可以使用不同的距离测量来识别脑簇,从而增加该方法的灵活性。

       尽管如此,基于聚类的方法应可能仅限于当其他主要使用的方法:如ICA和CCA(由于在估计参数时使用的基础假设更适合神经影像研究),由于研究目的或计算考虑不适用时使用。

实现和属性

       多种聚类方法,如k-means聚类、层次聚类和谱聚类,可以使用常见的编程语言(如Matlab、R和Python)应用。可以通过简单搜索每种语言找到适当的函数。可以使用之前描述的脑可视化工具(如用于PCA和CCA的工具)可视化结果。然而,最近的研究引入了专门为使用聚类方法分析神经影像数据开发的软件包。基于聚类的方法通常可以满足多变量方法部分中描述的属性i、ii和vii。然而,不同聚类方法的计算成本不同。例如,k-means聚类通常比谱聚类计算成本更低。

多变量模型方法

      多变量模型方法通常旨在检验关于脑网络数据和表型特征关联的明确假设。它们允许评估脑网络的系统组织,从而捕捉不同脑区域之间更高层次的相互作用复杂性。然而,脑网络数据的规模和复杂性,以及其与表型或认知任务相关的复杂变化,使得定义明确的假设变得困难,开发基于模型的框架和解释结果具有挑战性。因此,数据驱动的方法对于许多研究仍然可能更为合适。接下来,我们描述最重要的基于模型的多变量方法。

动态因果建模 (DCM)

    动态因果建模(DCM),由Friston等(2003)引入用于神经影像研究,是一种广泛使用的基于模型的方法,它识别有效(即定向)连接及其对设计的确定性输入的变化响应。该模型在统计参数映射(SPM)软件中实现,以便广泛使用,使用贝叶斯框架来估计参数化为不同脑区域(神经)活动之间耦合的有效连接(因果影响)。DCM将大脑视为一个确定性的非线性系统,并响应确定性输入估计参数。

      更具体地说,设z和y表示表示两个脑区域随时间变化的测量神经活动的变量,u表示表示实验输入的变量。那么,我们将有:

图片

     其中

图片

描述了z的变化,f是将

图片

与z和u通过耦合参数

图片

关联的某个非线性函数,g是将z与y通过耦合参数

图片

关联的另一个非线性函数,𝜖是加性噪声。

      然后,DCM使用贝叶斯推理程序来估计表示有效连接的耦合参数及其对实验输入的响应变化。DCM是用于有效连接分析最常用的方法(Friston等,2019),并且与其扩展(Friston等,2014;Li等,2011)一起被用于众多研究和各种神经影像数据,如fMRI、EEG和MEG(Jung等,2018;Kiebel等,2008;Murta等,2012)。DCM是少数允许检查脑区域之间因果相互作用及其对实验设计响应的方法之一。它特别有助于识别由感觉刺激和调节效应(例如学习)在少量脑区域之间产生的因果相互作用。

      然而,尽管有用于分析静息态研究数据的新扩展(Friston等,2014),明确的假设仍然是选择适当推理程序和模型维度的必要条件。此外,该方法的复杂性需要对其基础的数学理论有良好的理解,以便提出良好框架的假设。Stephan等(2010)列出了使用该方法的10条规则(过去几年引入的新扩展也应考虑)。

应用

      Lefebvre等(2016)使用DCM和fMRI数据探讨了幻觉如何从与精神分裂症相关的三个脑网络之间的相互作用中产生。他们首先考虑了另一个包含与精神分裂症相关的其他区域(如左海马)的网络,然后检查了这些四个网络(DMN、中央执行网络[CEN]和突显网络[SAL])之间的有效连接在幻觉期间、无幻觉期间、两者之间的过渡期和幻觉消失期的不同。他们为每个时期考虑了24个模型,12个模型用于SAL的非线性调制,12个用于左海马对其他3个网络的非线性调制,并分别为SAL和左海马提供随机输入。结果表明,SAL在改变这些患者中CEN和DMN之间的连接方面具有关键的因果作用,并且四个网络之间的有效调节相互作用依赖于幻觉阶段。

实现和属性

     DCM及其变体已在SPM中实现。DCM通常可以满足多变量方法部分中描述的属性i、ii、iii、iv、v和vii。然而,DCM的计算成本是该方法用于具有更高空间分辨率的脑网络研究的主要障碍。

结构方程模型 (SEM)

       结构方程模型(SEM)是另一种常用的多变量方法,类似于DCM,通过估计不同脑区域活动之间的因果关系来识别有效连接模式(McIntosh和Gonzalez-Lima,1994;McIntosh和Gonzalez-Lima,1991)。SEM可以被看作是DCM的特例,其中交互被建模为线性函数,并由噪声驱动,而不是实验输入。此外,在DCM中,假设交互发生在神经层面,因此应考虑血流动力学响应,而SEM使用的是源自经验数据或观察(如时间序列)的交互。

       SEM使用代表不同脑区活动之间假设因果关系的结构方程(通常基于合理或已知的解剖连接)来估计称为路径系数的连接强度(或影响力)。脑区的活动通过该区域的时间序列(如BOLD信号)测量。更具体地说,假设

图片

为前面描述的相同的时空数据矩阵,我们将得到一个标准SEM模型的以下方程:

图片

       其中,

图片

是包含路径系数的矩阵,对于假设不存在的连接元素为零,

图片

是均值为零的高斯误差项矩阵。

       然后,通过最小化由方程(6)导出的模型协方差矩阵与经验协方差矩阵之间的差异来估计参数(即在A中参数化的路径系数),通常通过最大似然估计或加权最小二乘程序。SEM及其扩展,如Chen等(2011)和Gates等(2011)介绍的那些,已被许多研究用于识别有效的脑连接模式(Bolt等,2018;Zhuang等,2005)。

      SEM是测试关于脑区之间简单因果交互的预定义假设的良好替代方案。与DCM一样,SEM一般不适用于具有大量脑区和假设连接的研究,因为所需的参数数量可能超过经验协方差矩阵的数量,从而导致在估计参数时没有自由度。此外,SEM无法在识别因果交互时考虑时间顺序。

应用

       Koechlin等(2003)使用结构方程模型研究了额叶前区(LPFC)腹侧和背侧LPFC以及前运动区之间的有效连接。该研究中使用的SEM模型还包括每个区域的左半球和右半球之间的双向连接。此模型允许测试认知控制在大脑中通过从腹侧LPFC到背侧LPFC到运动区的自上而下的交互影响。该研究提供了关于人类LPFC在协调外部和内部刺激的思维或行动方面的功能组织的见解。

实现和属性

     SEM已在各种编程语言中实现,如Matlab(SEM工具箱)、R(LISREL包)和Python(SEMOPY模块)。与DCM一样,此方法通常可以满足多变量方法部分中描述的属性i、ii、iii、iv、v和vii,并且该方法的计算成本低于DCM。然而,DCM中使用的基础假设捕捉了更高层次的复杂性。

多变量距离矩阵回归 (MDMR)

       Shehzad等人(2014)开发了一种多变量回归框架,将表型变量与节点连接特征关联起来。该框架可用于体素级和基于图谱的网络,也可用于结构和功能网络,允许通过两步程序将表型与大脑连接组关联起来。首先,通过计算每个节点与所有其他大脑节点的相关性来构建每个节点的连接特征。接下来,计算所有可能的参与者对之间相同节点连接特征的相似性,生成一个𝑚×𝑚矩阵(其中m是参与者的数量)。

     然后,在每个节点上,使用多变量距离矩阵回归 (MDMR) (Anderson, 2001; Zapala和Schork, 2006) 来量化变量之间的关系和连接模式,并通过置换检验确定关系的显著性。虽然该框架考虑了每个区域与其他大脑区域的交互,评估了多个表型的影响,控制了混杂效应,并减少了统计检验的数量,从而降低了假阳性率,但其应用仅限于连接-表型关联,因为它是一种连接方法(见连接和网络方法部分)。

     它不能用于研究大脑网络的拓扑属性,例如,在研究特定脑子网络的信息流效率时,不能使用此方法研究其他子网络的效率如何影响被研究的子网络。此外,该方法对距离测度的选择非常敏感。

应用

      Brady等人(2019)在研究精神分裂症患者的功能连接性和负性症状(如快感缺失和表达缺陷)之间的关系时使用了MDMR方法。Brady等人(2019)使用了44名被诊断为精神分裂症的参与者的静息态fMRI数据,并采用MDMR方法检查他们感兴趣的变量(负性症状严重性)与全脑体素级连接组数据之间的关系,同时控制了可能的混杂效应,如头部运动、年龄和处方药物剂量。结果表明,功能连接性与负性症状严重性之间存在显著关系,右侧背外侧前额叶皮层的功能连接性与负性症状之间的关系更为显著。

实现和属性

      MDMR方法已经在R包Connectir中实现。该方法通常可以满足多变量方法部分中描述的属性i、ii、iv、v、vi、vii和viii。

指数随机图模型 (ERGM)

     使用指数随机图模型(ERGMs)和混合效应模型(MMs),一系列新的研究开发了更复杂和有原则的多变量模型,不仅仅局限于建模连接-表型关联,还允许分析大脑网络的复杂拓扑属性,并在多个层次上包含依赖结构,但理解和解释结果的难度也相应增加。Simpson等人(2011)将ERGM应用于大脑网络分析,提供了一个框架,在考虑其他网络测量的贡献后,确定局部网络测量在解释网络全局结构中的重要性。

      ERGM将边的概率质量函数(PMF)建模为解释网络测量的函数(例如,节点聚类系数)。更具体地说,设

图片

表示表示大脑网络数据的随机对称邻接矩阵,当i和j之间存在连接时𝑊𝑖𝑗=1,否则𝑊𝑖𝑗=0。然后,该网络的PMF可以建模如下:

图片

      其中

图片

是一个预定的向量,包含作为网络𝑊函数得出的网络测量(包括任何图统计量,例如长度为3的路径数,或节点统计量,例如节点的空间位置),

图片

表示参数,量化了网络测量在解释网络拓扑时的显著性(通过控制所有其他网络测量来量化相对显著性),而κ表示归一化常数。

      此模型不仅说明了特定网络测量的显著性,还说明了与随机网络(边存在的概率=0.5)相比,该测量在解释全局网络结构时的普遍性(更多/更少普遍)。这最终允许在不同群体研究中检查全局网络结构从局部网络测量中出现的情况。

      尽管该模型捕捉了大脑网络的更高层次复杂性,并且其在分析和模拟大脑网络以及从解释性网络测量生成基于群体的代表性网络中的实用性已被证明(Simpson等,2012),但它有重要的局限性:(i)不适合多受试者比较;(ii)对于大量受试者,编程负担很大,因为每个受试者必须通过拟合单独的ERGM进行分析;(iii)由于该框架中的退化问题,包含新测量可能不可行(Rinaldo等,2009);(iv)该模型尚未适用于加权大脑网络,尽管在社会网络背景下已经有一些关于加权ERGMs的研究。最近的研究旨在解决一些限制,如实现多受试者比较和使用更多受试者(Lehmann等,2021;Sinke等,2016)。

应用

     Sinke等(2016)使用ERGMs研究了随年龄增长的大脑拓扑变化。他们将ERGMs应用于382名健康成人的全脑结构连接组,构建自DTI数据,以表征四个年龄组(20-34岁,35-50岁,51-70岁,>70岁)之间的拓扑差异。结果表明,尽管不同年龄组之间的网络拓扑发生了显著变化,驱动全局网络拓扑的局部网络特征的相对贡献随年龄增长保持稳定。然而,他们的ERGM分析显示,不同年龄组中对中心节点模拟病变的脆弱性不同,局部聚类和半球节点匹配的差异最大。

实现和属性

      ERGMs可以通过R中的各种软件包应用。该方法通常可以满足多变量方法部分中描述的属性i、ii、iv、v和vi。

混合效应模型 (Mixed-effects models)

      Simpson 和 Laurienti (2015) 使用混合效应模型 (MMs) 开发了一种分析全脑网络的多变量框架,解决了 ERGMs 的几个重要局限性。该框架将大脑区域之间是否存在连接的概率(即大脑连接的存在/不存在)和现有连接的强度建模为描述性网络测量(例如,节点聚类系数、模块化等)、表型特征(例如,年龄、疾病状态等)和混杂效应的函数。

     更具体地说,让 p_ijk 表示对于受试者 k,在节点 i 和 j 之间存在连接的概率,S_ijk 表示该连接的强度(如果存在)。然后,我们将有以下等式:

图片

      其中r和s的下标分别用于区分概率和强度模型,X是包含所需固定效应协变量的设计矩阵(例如,平均在每个二元组的全局效率,或用作解释变量的全脑模块化,或个体水平的协变量,如年龄、性别等),Z是包含所需随机效应变量的设计矩阵(例如,每个二元组的节点网络测量如聚类系数或全局效率),𝛽𝑟和𝛽𝑠分别是将连接概率和现有连接强度与 X 中使用的所需协变量联系起来的固定效应(总体)参数,br 和 bs 是随机效应(受试者和节点特异性)参数,分别捕捉关于总体关系的受试者和节点特异性关系的变化,e 是捕捉强度模型中的误差的高斯噪声项。

      logit 是一种常用的转换,用于在逻辑回归模型中转换二元变量(在我们的情况下是脑连接的存在/不存在),FZT 是应用Fisher's Z 变换以确保满足正态性假设。

      这个框架类似于 ERGM,允许人们确定解释性网络度量在大脑全局架构的出现中的显著性,模拟脑网络,并生成基于组的代表性模型。此外,它还可以用于多个受试者的比较,二元网络和加权网络都可以在这个两部分模型中进行分析,它可以用于量化表型特征与脑连接之间的关系,并且可以通过纳入交互协变量来比较研究群体之间的拓扑特性。

      尽管在纳入大脑网络的系统级特性方面很有前景,但除非将子网络与整体隔离开来,从而忽略它们与其他脑区的相互作用,否则该模型不能用于分析大脑的子网络。它不能用于研究大脑在不同任务中的变化(例如,研究静息状态和工作记忆之间的差异如何与感兴趣的协变量相关联),也不能用于配对受试者的研究。

      此外,实现这个复杂的框架可能是阻碍其广泛应用的主要障碍,特别是对于那些统计学和编程背景有限的人来说。此外,结果的解释,特别是在分析大脑的拓扑特性时,并不总是直截了当的。最后,由于计算密集性,它不能用于对大脑的体素级网络进行建模。最近的发展有助于解决其中一些限制(Bahrami et al, 2019a, Bahrami et al, 2019b; Simpson et al, 2019)。

应用

      Simpson 和 Laurienti (2015) 介绍的 MM 在 Bahrami 等人 (2022) 的研究中用于研究产前和幼儿期接触农药对拉美移民儿童的影响。使用静息 fMRI 数据,该研究表明,在暴露于农药的儿童和暴露最少或没有暴露的儿童之间,DMN 存在显著差异。更重要的是,该研究表明,在暴露于农药的儿童中,暴露与假设的两组之间观察到的拓扑差异显著相关。该研究中 MMs (混合效应模型)的应用允许识别在连接-拓扑关联中表现出更复杂但显著的效应。

实现和属性

      用于大脑网络的混合模型已在 Matlab 工具箱 WFU_MMNET 中实现。该方法通常可以满足多变量方法部分中描述的属性 i、ii、iii、iv、v 和 vi。然而,该方法的可解释性和计算成本是重要的限制。表 1 总结了本文描述的多变量方法。

表1. 用于分析大脑网络的重要数据驱动和模型驱动多变量方法总结

方法名称重要研究类别适用性简短描述
ICA

Beckmann 和 Smith (2005); Beckmann 和 Smith (2004); Calhoun 等 (2009); Calhoun 等 (2001); Erhardt 等 (2011)

数据驱动/连接方法功能网络/基于ROI和体素的研究强大的方法,用于在静息状态下(如内在连接模式)检查连接模式,或在没有明确假设时对数据进行去噪。实现:MELODIC (FSL), GIFT。
PCACaprihan 等 (2008); Lopez 等 (2011); Smith 等 (2014)数据驱动/连接方法功能网络/基于ROI和体素的研究强大的数据缩减方法,在应用其他方法(如ICA)之前,或者在其他方法不适用的大数据集上检查连接模式或去噪。实现:CPCA 和常见编程语言。
CCAHotelling (1992); Wang 等 (2020); Witten 等 (2009)数据驱动/连接方法结构和功能网络/基于ROI和体素的研究强大的方法,用于在没有明确假设或使用大量变量时,检查与行为结果相关的连接模式。实现:常见编程语言。
基于聚类的方法Craddock 等 (2012); Gupta 和 Rajapakse (2020); Li 和 Wang (2015)数据驱动/连接方法功能网络/基于ROI和体素的研究强大的方法,用于检查连接模式,特别是当与强连接关联方法结合使用时,或者在其他方法不适用的大数据集上应用。实现:Clu-b 和常见编程语言。
DCMFriston 等 (2003)模型驱动/连接方法功能网络/基于ROI的研究强大的方法,用于在存在明确假设时检查有效连接以及少量脑区的连接。实现:SPM。
SEMMcIntosh 和 Gonzalez-Lima (1994); McIntosh 和 Gonzalez-Lima (1991)模型驱动/连接方法功能网络/基于ROI的研究强大的方法,用于在存在假设的简单模型时检查有效连接。实现:常见编程语言。
基于MDMR的方法Anderson (2001); Shehzad 等 (2014); Zapala 和 Schork (2006)模型驱动/连接方法结构和功能网络/基于ROI和体素的研究强大的方法,用于将连接模式与多个表型特征相关联。实现:R 包 Connectir。
ERGMsLehmann 等 (2021); Simpson 等 (2012); Simpson 等 (2011); Sinke 等 (2016)模型驱动/连接和网络方法结构和功能网络/基于ROI的研究强大的生成模型,用于解释连接模式以及当分析相对较少数量的受试者时解释全局网络架构。实现:各种 R 包。
混合模型Bahrami 等 (2019a); Bahrami 等 (2019b); Simpson 和 Laurienti (2015); Simpson 等 (2019)模型驱动/连接和网络方法结构和功能网络/基于ROI的研究强大的方法,用于检查连接模式与拓扑网络测量、以及感兴趣的变量之间的关系,但解释复杂且计算成本高。实现:WFU_MMNET。

CCA,典型相关分析;CPCA,约束主成分分析;DCM,动态因果模型;ERGM,指数随机图模型;ICA,独立成分分析;MDMR,多变量距离矩阵回归;PCA,主成分分析;ROI,感兴趣区;SEM,结构方程模型;SPM,统计参数映射。

讨论

      在过去的二十年里,使用神经影像数据分析大脑的结构和功能网络呈指数级增长。然而,关键的分析空白尚未填补,无法充分利用这些进步提供的大量信息、数据和处理能力。缺乏简洁的多变量框架,使得人们无法将大脑作为一个复杂系统来分析,并深入了解健康和疾病状态下的大脑,同时缺乏选择现有多变量方法的标准指南,这是这些关键空白之一。

       与单变量方法不同,多变量方法提供了一个框架,可以评估多个表型对大脑连接性和拓扑结构的影响,在不进行多次分析或限制于匹配人群的情况下控制混杂效应,建模大脑连接性和节点网络测量中的依赖结构,模拟大脑网络,最重要的是,通过结合整个大脑网络的相互作用及其复杂的拓扑特性,可能将大脑作为一个复杂系统来研究。

       尽管这最终可能有助于解决一致性和可重复性问题,这些问题是神经影像研究广泛临床应用的重要障碍(Poldrack et al, 2019),但理解和解释结果是广泛利用这些方法的主要障碍。最近一项关于轻度认知障碍(MCI)患者静息状态连接性异常的系统评价表明,关于MCI与健康参与者之间DMN连接性的差异存在显著的不一致性(Eyler et al, 2019)。

      如该研究所述,一些研究表明DMN连接性增加,而另一些研究则表明DMN连接性减少,甚至在比较MCI和健康参与者时没有差异。这些不一致性阻碍了通过DMN异常来表征MCI,并将其作为识别可能进展为AD的这种障碍的潜在生物标志物。

       尽管许多因素有助于提高神经影像研究中的可重复性和一致性,例如数据和代码共享(Gorgolewski 和 Poldrack, 2016),开发可访问的多变量模型以捕捉大脑网络的复杂性,从而解释大脑中的未知、意外或补偿机制,同时提供可解释的结果,是一个关键步骤。

       开发一种可以用于所有类型大脑网络分析的“黄金标准”多变量方法可能永远无法实现,因为神经影像研究在空间和时间分辨率、分区方案(即区域数量)、研究重点(连接性或拓扑结构)以及研究问题/假设方面存在显著差异。因此,总是需要一套定制的工具。多变量模型在结合个体水平协变量(如年龄)方面更频繁地用于传统的神经影像研究分析,例如,识别对认知任务有反应的活跃脑区,在这种情况下,提出更直接的假设和直接效应是可能的。

       然而,大脑网络数据的复杂性(例如,多层次的依赖结构和复杂的补偿机制)以及数据量,使得开发用于网络分析的多变量方法成为一项重大挑战。尽管如此,在过去的二十年中,已经引入了严格的多变量方法,如果在适当的背景下使用,它们可以显著提高结果的可靠性和可重复性。

      选择最合适的多变量方法是另一个主要挑战,即使对于那些具有强大方法论背景的人也是如此。例如,尽管ICA成分可能对功能协调的大脑区域的隐藏结构提供有力的见解,但对潜在神经机制的了解不足可能导致错误地拒绝或接受ICA成分,将其分别视为有意义或噪音成分。

      在本文中,我们试图简要描述不同的多变量方法,提供基本的数学模型描述和应用研究,并强调它们的优缺点,以帮助根据变量(如网络类型(结构、功能)、人口规模、网络分辨率、假设等)选择合适的方法。我们将多变量方法分为两大类:数据驱动的方法,主要集中在连接性分析上;和模型驱动的方法,允许同时检查连接性和拓扑特性。

      我们相信,ICA及其各种扩展方法,如果使用得当,仍然是分析大脑网络最有吸引力的多变量方法,因为与其他多变量模型相比,它们具有强大的假设、易于实现和结果的可解释性。尽管Cahill等人(2016)和Dodero等人(2014)提出的方法(Aggarwal和Gupta,2019)是生成群体水平代表性网络的有趣方法,但我们认为ERGMs(Simpson等人,2012;Simpson等人,2011;Sinke等人,2016)和MMs(Bahrami等人,2019a;Simpson和Laurienti,2015;Simpson等人,2019)提供了更强大的框架,因为它们结合了描述性网络测量和建模依赖结构。

      关于生成代表性群体水平网络的可靠模型的需求已经有充分的文献记录(Jirsa等人,2010;Zuo等人,2012)。需要注意的是,生成模型有潜力用于基于网络特性和个体特征模拟大脑网络。进一步讨论多变量模型的模拟能力超出了本研究的范围,但如前所述,ERGMs和MMs是从描述性指标和期望变量中模拟大脑网络的极好方法。基于MDMR的方法(Shehzad等人,2014)在过去几年中也被广泛使用。

      这些方法提供了全面的框架来解决单变量方法的重要局限性,但它们不能用于分析大脑的复杂拓扑特性。基于ERGMs和MMs开发的方法也提供了这种框架来检查大脑的拓扑特性。这些方法是将大脑建模为复杂系统的重要步骤,但代价是解释困难和数据量考虑。

       多模式神经影像数据的多变量框架的实用性和分析动态网络应在开发未来的多变量模型和在可能的情况下扩展当前模型时加以考虑。鉴于每种神经影像模式提供了理解大脑结构或功能组织的不同视角,适用于多模式研究的多变量模型将提供更全面的视角来理解大脑。

       Sui等人(2012)的研究提供了关于多模式分析多变量模型的文献综述。此外,新兴的动态网络分析领域揭示了大脑功能及其异常的有趣信息(Hutchison等人,2013)。然而,由于数据的复杂性增加了一个新维度(时间),传统的多变量模型可能面临更大的挑战,以适用于大脑的动态网络分析。

       本综述并非没有局限性。在这个快速增长的领域中,不断有新的方法被引入来分析大脑网络,这使得很难对现有多变量方法的所有类别以及每个类别中最好或最有前途的方法进行全面的综述。尽管我们试图简要介绍现有的统计方法及其在将大脑作为复杂系统进行分析中的实用性、流行性和前景,但我们很可能遗漏了一些重要的方法。

       例如,除了旨在解决原始模型的多主体比较限制的新扩展ERGM之外,Pavlović等人(2020)引入的随机图模型随机块模型可以解决多主体比较的限制,而无需依赖网络平均方法。这甚至可能为提供关于期望结果的个体间变异的推理提供更好的框架。我们列出的多变量方法的总体期望特性基于我们的经验和对当前多变量方法挑战和前景的理解,因此,不一定被解释为理想多变量模型的终极或绝对真理特性。

       我们理解,在哪些特性最关键以及如何正确分类它们方面缺乏共识。然而,重要的是,我们在“实现和特性”部分解释了每种方法通常可以满足哪些特性。列出的特性也应谨慎考虑,因为这些特性基于此类方法的一般应用,而每种方法是否可以满足列出的特性可能会根据这些特性的具体定义和不同上下文而有所不同。

如需原文及补充材料请添加思影科技微信:1996207406318983979082获取,如对思影课程及服务感兴趣也可加此微信号咨询。另思影提供免费文献下载服务,如需要也可添加此微信号入群,原文也会在群里发布,如果我们的解读对您的研究有帮助,请给个转发支持以及右下角点击一下在看,是对思影科技的支持,感谢!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值