Nature Computational Science:脑龄估计及其临床应用前景

大脑年龄估计因其作为脑健康生物标志物的潜在应用而在神经科学界受到越来越多的关注。基于神经影像学数据估计的年龄与实际年龄之间的差异为研究大脑发育和衰老提供了独特的视角,但在大脑年龄研究领域仍存在诸多未解之谜。本文概述了该领域当前的进展,并展望了大脑年龄框架在可能应用于临床环境之前的未来发展方向。本文发表在Nature Computational Science杂志。

正文

       由于实际年龄并不能全面反映衰老过程的复杂性和异质性,生物学年龄这一概念被提出,它包含了多种生物生理学指标。这一概念旨在探究衰老为何对不同人群的影响各异,并更好地确定与年龄相关的不良结果风险。为了更深入地理解人体衰老过程的多样性,研究者开发了多种估算生物学年龄的方法,其中大脑年龄估计被认为能反映大脑的生物学年龄。

      大脑年龄估计提供了一个以衰老模式通用概念为中心的新框架,摆脱了传统研究中受样本量、模式特异性和疾病异质性限制的特定疾病比较。这种方法基于这样的认识:人类大脑在衰老过程中会经历特征性变化,而包括疾病在内的各种因素可以加速或减缓大脑的自然衰老过程。

      大脑年龄框架通常在预测任务中使用机器学习(ML)。算法先在没有精神或神经系统疾病诊断的人群的大脑特征(即大脑的结构和/或功能属性)上进行训练,然后应用于新数据,得出估计年龄。算法通过比较个体的大脑模式与该年龄段通常观察到的样本大脑模式来估计个体的大脑年龄(图1a)。估计年龄与实际年龄之间的差异被用作大脑衰老进程的简化度量。正值(即估计的大脑年龄大于实际年龄)表明存在更显著的、通常伴随衰老进程出现的大脑变化,而负值(即估计的大脑年龄小于实际年龄)则表示该个体的大脑模式比预期的更年轻

图片

图1:大脑年龄估计框架

      a, 大脑年龄估计框架源于创建一个能很好拟合健康衰老大脑的模型的想法,但在非正常情况下预测误差会更大。

      b, 目前还没有标准的大脑年龄估计模型构建方法;然而,这里描述了工作流程的常见步骤。初始输入(磁共振成像MRI、正电子发射断层扫描PET、脑电图EEG、脑磁图MEG)可以经过(最小程度的)预处理后输入算法。

      CNN,卷积神经网络;SFCN,简单全卷积网络;ResNet,残差网络CNN;GPR,高斯过程回归;RVR,相关向量回归;SVR,支持向量回归。估计年龄可以与实际年龄进行比较,并可以通过统计程序进行偏差校正。

      大脑年龄估计已被应用于研究各种精神和神经系统疾病、认知和生理标志物、遗传因素以及环境和生活方式因素的多项研究中。随着机器学习框架和大规模(开放获取)磁共振成像(MRI)数据集的日益普及,大脑年龄方法的实施变得越来越流行和易于获取。这些丰富的数据促进和改进了整个过程,最终导致对大脑衰老的评估更加准确和可靠。在过去十年中,大脑年龄估计领域取得了多项进展,同时也出现了多项挑战,我们将在本观点文章中简要讨论这些问题。

大脑年龄估计的益处和应用

      大脑年龄估计的进展可以促进对发育和衰老过程中与大脑健康相关的风险或保护因素的研究。大脑年龄可以作为一种工具,用于评估年龄相关的神经退行性疾病临床试验中干预措施的有效性,或旨在促进健康大脑衰老的干预措施的效果。通过监测个体大脑年龄估计随时间的变化,可以评估生活方式改变、药物治疗或认知训练项目对大脑衰老的影响,从而制定个性化的健康衰老策略。

      大脑年龄估计的应用范围超出了研究环境,它为复杂的大脑衰老模式提供了一种直观简单的衡量标准,有潜力成为大脑健康的无创生物标志物。它有助于早期临床识别神经退行性疾病高风险个体,以及疾病分期和进一步监测。

大脑年龄预测的计算方面

      随着MRI技术的进步和大规模神经影像数据集的可用性,如UK Biobank、开放获取影像研究系列(OASIS)、Nathan Kline研究所/Rockland样本(NKI)、图像信息提取(IXI)等,出现了多种大脑年龄算法。这些算法使用不同的术语来命名估计年龄与实际年龄之间的差异,如大脑年龄差估计(BrainAGE)、大脑预测年龄差异(Brain-PAD)、大脑年龄差值和大脑估计年龄差异(Brain-EAD)。尽管在命名上存在差异,但大脑年龄估计过程的一般共性可以被识别(图1b)。然而,目前还没有标准的大脑年龄估计方法,常见步骤的变化可能导致大脑年龄估计准确性和后续对疾病效应敏感性的变化。

输入

      大脑年龄模型的性能在很大程度上取决于输入数据的数量和类型,这些数据可以从重采样的原始数据到完全预处理的分析就绪的大脑特征。前者可用于深度学习(DL)工作流程,而标准机器学习(ML)算法通常需要特征选择和/或特征降维。

      迄今为止,最常用的神经影像特征来自结构性MRI,通过区域或体素/顶点方式预处理,得到的测量包括脑组织体积、皮层厚度、面积和曲率。此外,其他成像模态的特征也被用于预测大脑年龄,如静息态功能连接MRI、扩散MRI、正电子发射断层扫描,以及其他数据获取技术,例如脑电图或脑磁图。

      在年龄预测模型中结合多种模态的特征已被证明可以提高性能,相比单一模态方法。组合模态的最佳方法仍是一个开放的研究领域,作为优化不同数据类型"融合"的更广泛努力的一部分。这可以是"早期"融合,如简单的特征或图像拼接(例如,参见参考文献35),或"晚期"融合,如集成方法,其中大脑年龄预测分别为每种模态生成,然后使用平均或更复杂的集成方法进行组合(例如,参见参考文献37)。另外,也可以考虑"中期"融合技术,这种技术使用自编码器或类似方法从不同模态定义潜在表征,然后再组合这些潜在表征。大脑年龄预测模型不仅可以从数据融合研究的发展中受益,而且大脑年龄范式也为开发神经影像学的此类方法提供了有用的"沙盒",因为大量带有年龄标签的影像数据可供研究社区使用。

算法

      可用输入的数量和类型可以帮助确定算法的选择,这反过来会影响大脑年龄预测的结果以及与认知测量的关联。在已开发的(非)参数、(非)线性、贝叶斯、基于树和基于核的模型中,使用标准ML算法的大脑年龄研究主要采用相关向量回归、高斯过程回归、支持向量回归或极端梯度提升(XGBoost)。

      随着数据共享和聚合的进展,数据短缺通常是一个微不足道的问题,近年来DL模型开始在该领域受到更多关注。已经开发了各种模型来预测大脑年龄,如卷积神经网络、ResNet和简单全卷积网络。这些模型使用基于切片(二维)或基于体素(三维)的输入类型,一些预训练的大脑年龄模型可以在线公开获取。

       此外,用于自然语言处理或计算机视觉的transformer和扩散模型的发展最近产生了显著的影响。这通过ChatGPT或Stable Diffusion等技术引发了对人工智能的新一波主流兴趣。这些方法已经被采用来估计大脑年龄,包括视觉transformer(ViT)和图transformer,以及潜在扩散模型。然而,尚未发表比较这些新兴DL模型或更广泛的DL与"经典"ML方法在大脑年龄预测性能方面的基准研究,因此这些方法在多大程度上改进性能仍是一个开放的问题。对于该领域ML和DL算法的深入概述,我们分别引导读者参阅最近的综述文章。

输出

      大脑年龄算法的输出是个体的预测年龄,通常是单一的全脑测量值,或者如果在单独的脑区上训练,则为一组值。通过从预测年龄中减去实际年龄,我们得到感兴趣的测量值,这个值并不独立于年龄,在老年个体中表现为低估,在年轻个体中表现为高估。为了消除年龄依赖性,可以应用所谓的年龄偏差校正(即,回归掉年龄的效应)。已经提出了几种统计年龄偏差校正方法,其中一些在校正中使用实际年龄,而另一些则不使用。年龄偏差校正方法的选择可能影响最终的性能准确度,而用于估计校正回归参数的数据来源和数量强烈影响结果。得到的差距,无论是经过年龄偏差校正的还是未校正的(在进一步的统计模型中将年龄作为协变量),都可以用于进一步的(脑-行为)分析。可能最透明的方法是避免显式的年龄偏差校正,而依赖于使用年龄作为协变量,因为后续的统计分析应该提供相同的结果

       理论上,一个准确的大脑年龄模型在健康个体的测试集上具有低平均绝对误差,并在估计年龄和实际年龄之间产生高相关性。此外,它能在短期测试-重测或纵向场景中提供可靠和一致的估计,并且可以推广到不同的数据集。它在健康和临床群体中做出有效预测,并通过与其他生理和认知测量的有意义关联展示构建效度。然而,由于各种因素导致模型准确性的差异,通常无法直接比较大脑年龄模型的性能。

大脑年龄估计的挑战和进展

      大脑年龄研究的最新突破揭示了该领域的新挑战。我们在此展望进一步研究主题的前景,以及需要解决的挑战,以使大脑年龄成为医院环境中有用的生物标志物(图2)。

图片

图2:大脑年龄领域的进展和挑战

      要将大脑年龄测量作为生物标志物应用于临床,它必须准确、可靠且有效。在可能获得国家机构批准之前,还需要进一步的科学努力来标准化数据、模型、测量和程序。除了提高模型的准确性外,还需要研究该测量的有效性,同时减少黑箱因素。可靠的纵向预测对于监测大脑变化的进展至关重要,而不确定性感知方法可以增加临床医生对预测的信任。在进入医院环境后,预计初始努力将集中在技术实施领域以及提高医学影像数据质量(通过DL预处理或大脑年龄模型本身的计算进展)。考虑到影像数据和便携式低场扫描仪的日益普及,这一测量的伦理使用至关重要。PACS,图像存档和通信系统。

大脑年龄研究

      该领域在构建和评估已开发的大脑年龄模型方面缺乏共识。几项倡议试图为新旧大脑年龄模型的标准化和基准测试建立平台,最近的一项研究对多个公开可用的大脑年龄模型进行了基准分析,强调了这一领域进一步工作的重要性。尽管这些最近的标准化尝试为比较不同模型的准确性和可靠性提供了受欢迎的框架,但它们缺乏对大脑年龄作为生物标志物的有效性的检验。事实上,尚不清楚最准确的模型是否真的提供了最有用的生物标志物,因为它们可能忽视了区分健康和临床人群所需的有意义的生物信息。

       大脑年龄方法提供了大脑生物学年龄的估计,不仅捕捉了相关的生物学变异(衰老),还包括建模和数据相关的噪声。需要进一步研究来解开这种变异,并在大脑年龄范式内揭示大脑衰老的潜在生物学机制。正如已经指出的,大脑年龄不仅仅显示大脑衰老的模式,还可能反映贯穿整个生命周期的先天和/或早期大脑可变性(例如,一个人可能从童年起就有较大的脑室)。

      此外,大脑年龄估计可能受到与输入特征相关的混淆因素的影响,这些因素来自扫描仪差异、图像获取协议、图像质量、预处理流程等。为了使模型更好地推广到其他数据集,数据协调可以改善大脑年龄估计的结果,而迁移学习可以提供另一种可能的解决方案。为了将大脑年龄确立为临床生物标志物,未来的研究努力预计将集中在大脑年龄的神经生物学基础以及导致观察到的年龄差异的建模和数据获取相关因素领域。

      此外,如果大脑年龄要成为医院环境中有价值的监测指标,它应该提供可靠和一致的纵向预测。由于该方法建立在横断面变异性的基础上,从纵向角度来看,其有效性有限。对横断面数据进行训练可能使该方法对队列效应不敏感,并可能限制检测由个体发展引起的纵向变化的可能性。尽管如此,最近对一项纵向出生队列研究的应用表明,大脑年龄测量反映了先天和衰老差异,在早发性阿尔茨海默病中随时间纵向增加,并与大脑病理的存在和阿尔茨海默病的前瞻性转化相对应。

       需要进一步研究大脑年龄方法的纵向视角。在计算和应用方面,纵向数据的可用性是一个重大瓶颈。继续建立数据共享和汇总的协作框架,以及构建开源工具和框架,将有助于在未来克服这些和类似的问题。此外,大脑年龄领域的未来发展将依赖于人工智能的进步和图像处理的计算输出。

      大脑年龄估计的初始批评涉及其固有的黑箱方法,这是限制其整合到临床实践中的一个因素。可解释ML/可解释AI的进展使大脑年龄估计成为一种更少黑箱类型的测量,并且已经使用各种方法来理解模型的预测。已经实施了不同的模型无关和特定方法,如显著性图,以及可解释的原型学习方法。然而,由于缺乏健康大脑衰老偏差的真实依据,验证变得具有挑战性,因此应进一步研究模型的可解释性。

      在大脑年龄估计领域不常使用但符合当前DL实践的是:估计的不确定性也被认为是大脑年龄建模的一个重要步骤。为个体点预测提供置信区间或类似信息应该会增加终端用户(例如,临床医生)对预测的信任,增加大脑年龄被广泛采用的可能性。最近的研究实施了不确定性感知方法来估计大脑年龄,预计这一研究领域将有更多进展。从计算角度来看,在集成(DL)架构、自动机器学习(autoML)、减少计算复杂性等领域也可能有进一步的贡献。

      此外,最近对统计年龄偏差校正提出了担忧,在某些情况下,它可能人为地夸大模型的预测准确性,或者在特定情况下可能导致程序中的循环。作者质疑统计修正的大脑年龄的解释,并要求一个更好的措施来描述偏离正常的情况。尽管如此,在狭窄年龄队列中进行的大脑年龄研究,其中消除了实际年龄的混淆效应,已经验证了大脑年龄对其他衰老生物标志物或临床结果的敏感性。这些发现反驳了循环性论点,但仍然需要考虑偏离正常的替代概念。类似于儿科保健中的生长图表,规范建模可能提供一种可能的替代方案。

临床应用

      大脑年龄作为大脑健康生物标志物的初始概念设想了其在医院环境中的应用。然而,尽管经过十多年的发展,大脑年龄框架在临床实践中的实施仍有待成熟。之前简要介绍了一些增强该方法的基本挑战。在此,我们设想了可能促进该方法向医疗保健过渡的进一步(计算)进展。

      大多数大脑年龄模型是在来自精心策划的数据库的高分辨率数据上训练和测试的,这些数据库不代表当前临床成像实践,后者通常提供低分辨率的"二维"数据。然而,最近通过在各种MRI模态的原始临床数据上训练DL模型,朝着临床应用迈出了一步,形成了一个可能适用于常规医院检查的筛查工具。在临床应用背景下可能有益的计算进展还包括对图像分辨率和MRI对比度类型不敏感的模型,通过使用合成图像进行学习,MRI感知数据增强方法以减少例如偏置场不均匀性的影响,或旨在改善较低质量图像的图像增强方法。这一点很重要,因为大多数临床神经影像站点无法获得研究环境中可用的更高质量MRI扫描仪,而且通常吞吐量更高,质量保证和重新扫描患者的能力更低。便携式低场MRI扫描仪可能在临床情况下变得更加普遍。因此,质量不敏感的模型或图像增强方法可能对那些通常无法进行更高场MRI(即≥1.5 T)的人进行大脑年龄估计非常有益。

      在医院环境中实施之前,需要获得国家机构的批准。确保大脑年龄模型可以部署在医院计算机系统(例如,图像存档和通信系统)上对于临床访问大脑年龄结果至关重要,已经有商业供应商在医院环境中推广他们自己版本的大脑年龄(例如,BrainKey,https://www.brainkey.ai/)。临床部署伴随着软件一致性和向后兼容性的要求,以便即使计算进展使旧模型过时,也能在不同地点和不同时间可靠地生成结果。软件"容器化"将是其中的关键部分,提供包含相关依赖项的独立虚拟环境,以便大脑年龄模型可以在不同操作系统上运行并维护旧版本。

       与临床部署相关的另一个重要计算发展是联邦学习,它已成为克服生物医学研究(包括神经影像学)中隐私和数据安全问题的一种有前途的方法。使用联邦学习方法,不需要在站点之间共享个人级数据,只有本地学习的模型参数被集中或"联邦化"。这可能为训练大脑年龄模型打开了获取更大数据集的通道,并且已经显示出一些前景。用于联邦聚合本地参数的算法是联邦学习过程的关键组成部分,是一个活跃的研究领域。作为联邦学习的替代方案,通过元分析增强神经影像遗传学(ENIGMA)联盟已经建立,以促进匿名神经影像数据(例如,FreeSurfer体积和皮层厚度值)的汇集,用于元分析或大型分析。ENIGMA大脑年龄工作组(https://enigma.ini.usc.edu/ongoing/enigma-brainage/)正在领导优化模型和协调程序的努力,以从此类数据集中预测大脑年龄,包括在重度抑郁症和精神分裂症中。

      尽管有众多潜在的改进,大脑年龄方法的进一步发展与其他生物学衰老测量的进展同样存在不确定性,可能会引发与就业、法律事务、保险和医疗保健提供相关的伦理问题。虽然目前MRI扫描的成本太高,无法被国家机构、人寿保险公司或其他参与者考虑,但降低这些成本的潜力以及随后在症状出现之前将大脑年龄估计作为阿尔茨海默病的非侵入性生物标志物的可用性可能与这些利益相关者有关。此外,在揭示较高的大脑年龄估计的情况下,可能会出现关于污名化、歧视和压力诱导的其他问题,特别是对于没有持续记忆障碍的工作人群。

       因此,我们警告不要将大脑年龄估计作为一般筛查工具。如修女研究所示,参与者死后大脑结构的明显病理变化在死亡前并未反映在他们的认知功能中。个体估计年龄与实际年龄之间的巨大差异并不能提供足够的证据来确定诊断。大脑具有显著的可塑性、适应性和补偿能力,即使在存在实质性大脑萎缩的情况下也能帮助维持正常的认知能力。因此,重要的是要考虑其他因素,如认知表现、功能能力以及神经系统症状的存在或缺失,以全面了解个体的大脑健康状况。大脑年龄估计可以作为一种支持性生物标志物,帮助医生识别可能偏离正常衰老的情况并监测大脑变化的进展。

结论

      大脑年龄估计方法代表了分析大脑影像数据的传统方法的一个突破,提供了对健康和年龄相关大脑变化的全面理解。通过利用机器学习的优势,同时关注偏离正常衰老模式的情况,大脑年龄估计为与衰老和疾病相关的复杂结构性大脑变化模式提供了简单的量化。这种方法最小化了混淆因素,允许更准确地评估个体内的大脑衰老,无论其具体的临床状况或疾病阶段如何。近年来,该领域取得了许多进展;然而,需要计算科学支持的进一步研究,以揭示该方法在推进我们对大脑的理解和在临床实践中应用的潜力。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值