妊娠是一个每年有数百万女性经历的荷尔蒙和生理变化剧烈的时期,然而在整个孕期母体大脑中发生的神经变化在人类中尚未得到充分研究。利用精密成像技术,我们对一位个体从孕前到产后2年的神经解剖学变化进行了测绘。在整个大脑中,灰质体积和皮层厚度明显减少,与之形成对比的是白质微结构完整性、脑室体积和脑脊液的增加,几乎没有区域不受转变为母亲这一过程的影响。这个数据集作为整个孕期人类大脑的综合图谱,为脑成像研究社区提供了一个开放获取的资源,以进一步探索和理解母体大脑。本文发表在Nature Neuroscience杂志。
可结合以下两篇文章共同阅读,增加理解(直接点击即可浏览,感谢转发推荐):
Nature Neuroscience:怀孕导致人类大脑结构的长久改变
妊娠对静息状态大脑活动、白质微结构、神经代谢物浓度和灰质结构的影响
Nature Neuroscience:妊娠、分娩和产后期间女性的神经可塑性
主要内容
全球范围内,近85%的女性在一生中经历一次或多次妊娠,每年约有1.4亿女性怀孕。在大约40周的孕期内,母体经历深刻的生理适应以支持胎儿发育,包括血浆容量、代谢率、氧气消耗和免疫调节的增加。这些快速适应由雌激素和孕激素等激素产量增加100至1000倍引发。这些神经调节激素还驱动中枢神经系统的显著重组。来自动物模型和人类研究的证据都表明,妊娠是一个显著神经可塑性的时期(参见文献10中最早的已知观察之一)。孕期类固醇激素合成的增加推动了神经发生、树突棘生长、小胶质细胞增殖、髓鞘形成和星形胶质细胞重塑(综述见文献11)。这些细胞变化在促进母性行为的脑回路中尤为显著。例如,Ammari等人最近发现,类固醇激素可以微调啮齿动物下丘脑内侧视前区(mPOA)加兰宁神经元的反应特性,使母兽对新生幼崽的感觉线索更加敏感。
在人类中,产后观察到灰质体积(GMV)减少,特别是在心理理论处理的核心区域。这些GMV变化在产后6年仍然存在,并可在数十年后追踪,凸显了这一重大重塑事件的持久性。然而,妊娠期间母体大脑内发生的变化几乎未知(早期神经影像学见解参见文献20)。Paternina-Die等人最近的研究提供了有趣的线索。女性在孕晚期和产后各进行一次扫描,结果显示在孕晚期扫描中已可观察到皮层体积减少。这些发现表明,妊娠是神经重塑的高度动态期,但神经科学家缺乏人类大脑在整个孕期如何变化的详细图谱。
在此,我们进行了一项妊娠精密成像研究,一位38岁健康的初产妇从受孕前3周到产后2年进行了26次磁共振成像(MRI)扫描和静脉穿刺。我们观察到皮层灰质体积(GMV)和皮层厚度(CT)广泛减少,与孕周进展和性激素产量急剧上升同步。皮层下结构中也明显重塑,包括腹侧间脑、尾状核、丘脑、壳核和海马。对内侧颞叶(MTL)的高分辨率成像和分割进一步扩展了这些发现,揭示了海马亚区CA1、CA2/CA3和海马旁皮层(PHC)的特定体积减少。与皮层和皮层下GMV的广泛减少相反,相关性纤维束追踪分析显示,随着孕周进展,大脑中白质定量各向异性(QA)呈非线性增加,表明纤维束完整性增强。总之,这些发现揭示了人类大脑在妊娠期间发生的高度动态变化,展示了成年后广泛神经重塑的能力。
方法
参与者
我们的参与者(E.R.C.)是一位38岁健康的初产妇,通过体外受精(IVF)实现怀孕。先前研究报告,自然受孕与IVF受孕的女性在孕前到产后的神经变化方面没有可观察到的差异,而且这种方法提供了一种可控的方式来监测妊娠状态。参与者没有妊娠并发症(如妊娠糖尿病和高血压),足月顺产分娩,产后哺乳16个月,无神经精神诊断史、内分泌疾病、先前头部创伤或吸烟史。参与者提供了书面知情同意,研究获得了加州大学欧文分校人类受试者委员会的批准。
研究设计
参与者从受孕前3周到产后2年(162周)进行了26次MRI扫描,期间获取了大脑的高分辨率解剖和扩散谱成像扫描。扫描分布在整个期间,包括孕前(4次扫描)、第一孕期(4次扫描)、第二孕期(6次扫描)、第三孕期(5次扫描)和产后(7次扫描;图1c)。前6次扫描在UCSB脑成像中心(BIC)进行,后20次扫描在UCI影像与脑研究设施(FIBRE)进行。大多数扫描在上午9点至下午2点之间进行,限制了显著的上午-下午波动。MRI协议、扫描仪(西门子3T Prisma)和软件(版本MR E11)在各地点均相同。在研究期间,每台扫描仪每周进行检查,并通过所有质量控制报告,表明几何结构没有显著改变。为确保结果的稳健性,在最后一次研究会话后,参与者在12小时内在UCI和UCSB完成了背靠背的验证扫描,以评估扫描仪之间的可靠性。组内相关系数(双向、随机效应、绝对一致性、单一评分者)显示扫描仪之间的测试-重测可靠性"优秀",包括ROI级GMV(ICC = 0.97,95% CI:0.80-0.99)、ROI级CT(ICC = 0.96,95% CI:0.90-0.98)、MTL(内侧颞叶)亚区体积(ICC = 0.99,95% CI:0.97-0.99)和ROI级QA(ICC = 0.94,95% CI:0.91-0.97)。此外,当仅检查UCI孕期会话中孕周与GMV(灰质体积)的关系时,结果一致(补充图12),表明地点差异不太可能对观察到的效应产生有意义的贡献。虽然在这里不适用,但我们注意到,在同一扫描仪中对一位对照参与者进行类似持续时间的扫描对于估计大脑变异中有多少可归因于扫描仪内部变异性至关重要。
为监测状态依赖的情绪和生活方式措施,在每个实验日都进行了以下量表:感知压力量表、匹兹堡睡眠质量指数、成人状态-特质焦虑量表和情绪状态量表。状态依赖措施、总体脑指标和孕周之间的相关性分析显示几乎没有关系。唯一的例外是全局QA(白质定量各向异性)与状态焦虑之间存在中等程度的负相关(斯皮尔曼相关系数(ρ) = -0.65,q = 0.04;基线-36周,n = 16)。通过公开这些数据,我们鼓励采用更细致的方法来探索妊娠期间情绪和生活方式措施与脑变化的关系。
内分泌程序
参与者在MRI扫描前进行血液采集(n = 19;图1c)。性类固醇浓度通过布列根和妇女医院研究检测核心(BRAC)的超灵敏液相色谱-质谱法确定。检测灵敏度、动态范围和批内变异系数如下:雌二醇-1.0 pg ml-1,1-500 pg ml-1,<5%相对标准偏差(RSD);孕酮-0.05 ng ml-1,0.05-10 ng ml-1,9.33% RSD。由于与加州大学欧文分校临床研究中心的日程安排冲突,有5次会话未获得血清学样本。
MRI采集
在加州大学圣巴巴拉分校和欧文分校进行的MRI扫描使用配备64通道相控阵头/颈线圈的3T Prisma扫描仪(其中50个线圈用于轴向大脑成像)。使用T1加权(T1w)磁化准备快速梯度回波(MPRAGE)序列(重复时间(TR)= 2,500 ms,回波时间(TE)= 2.31 ms,反转时间(TI)= 934 ms,翻转角 = 7°,0.8 mm厚度)获取高分辨率解剖扫描,随后进行梯度回波场图(TR = 758 ms,TE1 = 4.92 ms,TE2 = 7.38 ms,翻转角 = 60°)。还获取了T2加权(T2w)涡轮自旋回波扫描,采用斜冠状方向定位,与海马主轴正交(TR/TE = 9,860/50 ms,翻转角 = 122°,平面内分辨率0.4 × 0.4 mm2,2 mm层厚,38个交错切片无间隙,总采集时间 = 5分42秒)。扩散谱成像(DSI)协议采样整个大脑,参数如下:单相,TR = 4,300 ms,回波时间 = 100.2 ms,139个方向,b-max = 4,990,FoV = 259 × 259 mm,78层,1.7986 × 1.7986 × 1.8 mm体素分辨率。这些图像线性配准到全脑T1w MPRAGE图像。使用定制泡沫头套在头部和颈部周围提供额外填充,并最小化头部运动。此外,在第二和第三孕期扫描期间,在参与者腰部周围放置定制的吸音泡沫腰带,以减弱胎儿附近的声音。
图像处理
皮层体积和厚度
使用高级归一化工具版本2.1.0(ANTs)测量CT(皮层厚度)和GMV(灰质体积)。我们首先基于参与者的两次孕前全脑T1加权扫描构建了一个受试者特异性模板(SST)(antsMultivariateTemplateConstruction2)和组织先验(antsCookTemplatePriors),以相对于参与者孕前基线检查神经解剖学变化。我们使用ANTs提供的OASIS人群模板标签作为这一步骤的先验。对于每个会话,使用ANTs CT管道(antsCorticalThickness)处理结构图像并配准到SST(受试者特异性模板)。这从N4偏场校正开始,用于场不均匀性校正,然后使用混合配准/分割方法进行脑提取。使用Atropos进行组织分割,创建脑脊液、灰质、白质和深部灰质的组织掩模。Atropos允许先验知识指导分割算法,我们使用SST的标签作为先验,以最小化变形并保持在原生参与者空间。然后使用DiReCT算法估计CT(皮层厚度)测量,该算法估计灰白质界面和灰质-脑脊液界面,并计算两个相互作用之间的微分同胚映射,从中得出厚度。每个灰质组织掩模被归一化到模板,并乘以通过仿射和非线性变换计算的雅可比图像。使用MATLAB(2022a版本),通过取Schaefer 400区域图谱每个区域内所有体素的第一特征向量(类似于"加权平均值"),获得每次扫描的CT(皮层厚度)、GMV(灰质体积)和脑脊液的总结、区域级估计。然后我们平均了跨网络的ROI,这些网络由17网络Schaefer方案定义。通过对各自输出图像中的所有体素求和,计算每个会话的CT(皮层厚度)、GMV(灰质体积)和脑脊液的全局测量;通过对每个会话的脑提取掩模内的所有体素求和,计算总脑体积。当使用从所有26个MRI(孕前到产后)得出的SST(受试者特异性模板)时,以及当估计每个区域内所有体素的平均值(相对于加权平均值)时,我们的发现仍然成立。
ANTs CT管道经过高度验证,具有良好的测试-重测可重复性,与基于表面的FreeSurfer相比,能更好地从区域CT(皮层厚度)测量中预测年龄和性别等变量。然而,为了跨软件包复制我们的发现,我们还通过纵向FreeSurfer(v.7)CT管道运行了T1w数据,这证实了我们使用Schaefer-400(补充图2和补充表1和4)和流行的Desikan-Killiany62(补充表3)皮层分区的发现。使用这个FreeSurfer管道还得出了全脑T1w基础的皮层下体积估计(包括小脑和侧脑室),我们通过常用的"aseg"分区方案得出28个感兴趣区估计(补充图6a)。完整的发现报告可在补充数据1中找到。
使用具有10分钟静息态扫描的孕期会话(n = 18)的平均帧间位移(FWD)估计来间接评估妊娠期间运动是否增加。整个实验中的平均FWD(mm)极小(M = 0.13,s.d. = 0.02,范围 = 0.09-0.17),并且在妊娠阶段之间仅略有变化(孕前,M = 0.11和s.d. = 0.004;第一孕期,M = 0.11和s.d. = 0.01;第二孕期,M = 0.13和s.d. = 0.02;第三孕期,M = 0.16和s.d. = 0.007;产后,M = 0.13和s.d. = 0.01)。虽然平均FWD确实与孕周相关(r = 0.88,P < 0.001),但控制这一因素并不改变我们的主要发现(例如,在部分相关FWD后,总GMV仍与孕周呈负相关(r = -0.87和P < 0.001),因为各阶段之间的运动差异很小(补充图4a))。
作为数据集稳健性的进一步测试,我们使用MRIQC(23.1版)的IQMs管道对所有T1w图像进行QC评估。感兴趣的评估包括(1)联合变异系数(CJV),(2)灰质信噪比(SNR)和(3)对比噪声比(CNR)。所有QC指标都在预期的标准范围内65(补充图4b-d)。虽然孕周与QC措施之间存在关系(CJV,r = 0.70和P < 0.001;SNR和CNR,r = -0.83和P < 0.001),但在回归模型中包括这些变量并不影响我们关于皮层GMV在孕期减少的发现,特别是在属于注意力和体感网络的区域(补充图5)。在查看所有MRIQC输出时,注意到第七次会话(孕周九,第一孕期)存在差异。从分析中移除这一天只会加强观察到的皮层体积与孕周之间的关系;然而,为了完整性,这一天的数据包含在主要发现中。这些实验中每个会话的QC输出可在补充数据1中找到。最后,我们使用FreeSurfer的Euler数来评估每个T1w结构图像的领域标准定量评估。我们观察到Euler数与孕周或总结脑指标之间没有显著关系。在第八次会话中注意到一个差异(例如,低于平均值两个标准差);然而,移除这个会话并不影响我们显示孕期GMV减少的主要发现。
海马体分割
T1和T2加权图像(n = 25)被提交给海马亚区自动分割软件包(ASHS)进行7个内侧颞叶(MTL)亚区的分割:CA1、CA2/CA3、齿状回、下托、鼻周皮层、内嗅皮层和海马旁回(补充图6b)。ASHS分割流程使用分割后的群体图谱,即普林斯顿年轻成人3T ASHS图谱模板(n = 24,平均年龄=22.5岁),自动在T2加权MRI扫描中分割海马。对于每天的扫描,通过刚体变换将每个T2加权图像与相应的T1加权扫描对齐。使用ANTs可变形配准,将T1加权图像配准到群体图谱。得到的变形场被用来将数据重采样到左右模板MTL ROI的空间中。在每个模板ROI内,图谱包中的每个T2加权扫描都被配准到当天的T2加权扫描。然后将手动图谱分割映射到T2加权扫描的空间中,使用联合标签融合计算T2加权扫描的分割。最后,将ASHS中包含的校正学习分类器应用于联合标签融合产生的一致分割结果。这一步骤的输出是T2加权扫描的校正分割。
ASHS协议的进一步描述可以在参考文献67找到。T2加权扫描和分割首先使用ITK-SNAP进行质量保证的视觉检查,然后使用ITK-SNAP在本机空间进行手动编辑。由于扫描方向错误,一个扫描(扫描15,孕晚期)被丢弃。分割标签的前部范围锚定在岛叶阈的出现前4毫米(两个切片),后部范围锚定在侧脑室三角部海马灰质消失处。鼻周皮层、内嗅皮层和海马旁皮层之间的边界根据Olsen-Amaral-Palombo(OAP)分割协议确定。在自动分割不能清楚对应底层神经解剖学的情况下,例如某个标签缺少几个灰质体素时,手动修饰允许添加或删除单个体素。所有结果都使用手动修饰后的亚区体积报告,以确保最忠实地表示底层神经解剖学。扫描被随机化,分割以随机顺序进行,对孕期阶段保持盲法。为了评估本分析的评分者内部可靠性,两天的扫描进行了第二次手动编辑。亚区间的广义Dice相似系数为0.87,组内相关系数为0.97,表明分割具有很强的可靠性。
白质微观结构
使用自动化软件QSIprep(版本0.16.1)对扩散扫描进行预处理,该软件使用singularity容器编译,主要使用默认参数运行,但有以下例外:'--output resolution 1.8', '--dwi denoise window 5', '--force-spatial-normalization', '--hmc model 3dSHORE', '--hmc-transform Rigid'和'--shoreline iters 2'。23次扫描进行了预处理和分析,其余3次扫描因缺少DSI扫描(第9和15次扫描)或相应的用于畸变校正的场图(第7次扫描)而被排除。尽管在预处理过程中通过了质量控制评估,但对第10次扫描的场图进行视觉检查时发现了轻微的伪影。然而,删除这次扫描对总体结果的影响很小,因此保留在最终分析中。T1加权图像经过强度非均匀性校正(N4BiasFieldCorrection)和颅骨剥离(antsBrainExtraction)。这些图像经过空间标准化,并配准到ICBM 152非线性非对称模板。最后,使用FMRIB的自动分割工具(FAST)对每个颅骨剥离后的T1加权图像进行脑脊液、灰质和白质的脑组织分割。扩散图像的预处理首先使用MRtrix3的dwidenoise函数实现5体素窗口的MP-PCA去噪。使用MRtrix3的dwibiascorrect和N4算法校正B1场不均匀性。使用SHORELine方法进行运动校正。基于GRE场图进行易感性畸变校正。使用DSI Studio通过singularity容器版本Chen-2022-07-31 (ref. 74)准备预处理后的Nifti扫描进行纤维追踪。使用DSI Studio命令行'--action=src'和自定义脚本将扩散图像转换为源代码文件以转换所有图像。使用1.25的扩散采样和1.8毫米等方分辨率的输出分辨率,在MNI空间中使用q空间微分同胚重建扩散数据。指定以下输出指标包含在输出FIB文件中:QA(白质定量各向异性)和平均扩散率(MD)。使用'QC1: SRC Files Quality Control'评估重建图像的质量和完整性。首先,检查每个图像的图像维度、分辨率、DWI计数和壳层计数的一致性。其次,评估每个图像的'相邻DWI相关性',该相关性计算具有相似梯度方向的低b值DWI体积的相关系数。较低的相关值可能表示由于伪影或头部运动导致的扩散信号问题。最后,DSI Studio执行异常值检查,如果相关系数与绝对平均值相差>3个标准差,则将图像标记为'低质量异常值'。我们的扫描中没有被标记为异常值。重建的参与者文件被聚合成每个指标一个连接组学数据库。
Day2Day对照数据集
为了将我们的发现与非孕期密集采样个体的对照组进行比较,我们使用了Day2Day数据集,该数据集为8名参与者(2名男性)提供了可比较的全脑T1和T2 MTL(内侧颞叶)扫描,在2-7个月内进行了12-50次扫描。每个参与者都按照上述ANTs CT和ASHS处理流程('皮层体积和厚度'和'海马分割')进行处理。需要注意的是,为了与主要数据集保持一致,我们基于每个参与者的前两次扫描创建了一个SST(受试者特异性模板);T2 MTL扫描的亚区体积没有进行手动修饰。由于公开可用的扩散扫描缺少头文件信息,我们无法使用Day2Day数据集对我们的白质变化进行基准测试。
总体脑指标
为了反映现有文献,我们首先探讨了整个研究期间(孕前至产后,n = 26次扫描)的脑指标。当包括所有扫描时,总脑体积、灰质体积、皮层厚度、全局QA(白质定量各向异性)、脑室体积和脑脊液随时间呈现非线性趋势;因此,我们使用广义加性模型(GAM;三次样条基础,k = 10,平滑 = GCV),一种非参数回归分析方法(R包,mgcv),来探索总体脑指标(结果变量)和孕周(平滑项)之间的关系。对每个模型进行检查(gam.check函数),以确保其在以下方面正确指定:(1)基础维度(k)的选择和(2)模型残差的分布(参见mgcv文档)。在调整模型参数后,总体结果模式保持不变;然而,我们注意到在小样本量下过度解释复杂模型的风险。为了解决过拟合问题并交叉验证我们的基础类型选择,我们还使用非惩罚广义线性模型(GLM)拟合数据,包括孕周的线性和多项式项。我们通过Akaike信息准则(AIC)比较了每个GLM的性能(即,仅使用线性项的模型与使用多项式项的模型),结果显示三次模型始终优于线性和二次模型(AICdiff > 3),为结构性脑变量随时间的非线性变化提供了额外证据。确定这些模式是否在更大的队列中重复出现,以及复杂模型是否更适合捕捉跨个体的数据模式,将是下一步必要的工作。
皮层灰质体积和厚度
然后,我们将分析范围缩小到前19次扫描(基线-孕36周),以评估妊娠窗口期间发生的新脑变化。我们首先计算了以下变量之间的皮尔逊积矩相关矩阵:孕周、雌二醇、孕酮和17个网络级别平均灰质体积值。然后,我们进行了多变量回归分析,预测孕周对ROI级别灰质体积变化的影响。为了确定哪些区域的变化速率与全局减少不同,我们再次运行分析,在回归模型中包括总灰质体积(补充表2)。这扩展到网络级别,我们进行了考虑总灰质体积的偏相关分析。然后对皮层厚度指标进行相同的分析。全局校正结果见补充表1-5。网络级别的百分比变化通过从最后一次孕期值(孕36周)减去第一次孕前基线值,然后将该差值除以第一次孕前基线值来计算。所有分析都进行了多重比较检验(FDR校正,q < 0.05)。
皮层下灰质体积
对皮层下体积估计采用了类似的统计方法。我们进行了多变量回归分析,预测28个ROI(补充图6a)中灰质体积随孕周的变化(FDR校正,q < 0.05)。
为了评估孕周与妊娠期间MTL(内侧颞叶)亚区体积之间的关系(n = 7个双侧亚区和n = 18次MTL扫描),我们根据各亚区的数据模式使用了线性和非线性模型的组合。通过GLM输出的AIC比较每个亚区的最佳拟合模型(如"总体脑指标"中所述)。线性回归模型最适合PHC(海马旁皮层)(AICdiff < 3),而二次模型对CA1和CA2/CA3表现最佳。作为对照,我们在ASHS计算的总灰质体积的比例体积校正后,重复了MTL亚区体积的分析。最后,我们使用线性回归评估了内源性性激素(雌激素和孕酮)与亚区体积之间的关系。只有在满足FDR校正(q < 0.05)的情况下,关系才被认为是显著的。
白质微观结构
使用DSI Studio的相关性纤维追踪分析白质结构与孕周之间的关系(n = 16)。运行了截断模型,以检查妊娠期间白质与性类固醇激素之间的关系(n = 14),该模型针对具有配对内分泌数据的扩散扫描子集。使用非参数斯皮尔曼相关来推导孕周和内分泌因素与我们感兴趣的指标(QA和MD;见补充表9和补充图10的MD结果)之间的相关性,因为数据不符合正态分布。统计推断采用了连通测量法(connectometry),这是一种基于置换检验的方法,用于检验局部连接组与我们关注的变量之间的连贯关联的强度。通过多重比较校正,该方法提供了更高的可靠性和可重复性。该技术能够对局部轴突方向进行高分辨率的表征。相关性纤维追踪使用以下参数运行:t分数阈值为2.5,4次修剪迭代,长度阈值为25体素距离。为了估计FDR,总共应用了4,000次随机置换以获得轨迹长度的零分布。报告的区域基于FDR截止值(FDR < 0.2,由DSI Studio建议)选择,并至少包含10条纤维。为了可视化每个妊娠阶段的全局和纤维束QA(白质定量各向异性),使用DSI Studio的全脑纤维追踪算法和基于默认HCP842图谱的ROI追踪提取平均QA值。
Day2Day数据集:测量变异性
为了建立半年内正常变异性的标准,我们使用Day2Day数据集23计算了测量变异性指标,该数据集提供了全脑T1和高分辨率T2 MTL扫描。对于Schaefer分区的每个区域j,我们评估了跨会话变异性ε,公式如下:
其中ts是某次扫描会话s的一个脑区的形态测量值,t̄是所有会话t的平均值。因此,我们将变异性定义为每个个体与跨会话平均值之间的平均绝对百分比差异。然后,将所有400个区域的跨会话变异性估计值在8名参与者中取平均,并通过对400个区域取平均计算出皮质灰质体积(GMV)变异性的全局测量值。我们对T2海马扫描独立重复了这种方法,其中我们计算了ASHS分区方案中每个脑区的跨会话变异性(双侧7个亚区)。然而,值得注意的是,Day2Day变异性评估使用的是原始亚区值(即没有手动修正),应谨慎解释。最后,为了更好地与我们自己的数据进行比较,我们使用参与者的前两次基线扫描(即受孕前)重复了这种方法,以得出参与者内部变异性估计。
以这种方式对我们的数据进行基准测试,使我们能够捕捉到由于图像处理和仪器变异性等因素或其他可能调节大脑大小和形状的日常变化而预期的变化程度(参见80号参考文献综述)。在妊娠期间观察到的百分比变化(基线与孕36周相比)远远超过了使用Day2Day数据集(补充图11)和我们的参与者内部对照数据估算的预期变异性。我们通过将GMV指标的观察到的百分比变化(基线与孕36周相比)除以每个对照组(即Day2Day,参与者内部对照)的GMV百分比变异性的全局测量值来量化这一点,分别针对皮质和皮质下结构进行计算。
结果
血清学评估
血清学评估捕捉到了产前、围产期和产后时期的典型激素波动特征(图1b)。血清激素浓度在整个孕期显著增加,并在产后急剧下降(孕前,雌二醇(E) = 3.42 pg/ml,孕酮(P) = 0.84 ng/ml;产前3周,E = 12,400 pg/ml,P = 103 ng/ml;产后3个月,E = 11.50 pg/ml,P = 0.04 ng/ml)。
图1:精密成像揭示整个孕期的神经解剖学变化。
a, 按孕周划分的标准医学妊娠阶段(即三个孕期)。
b, 类固醇激素在整个孕期显著增加,并在产后急剧下降,这是产前和产后时期的特征。
c, 一名38岁健康的初产妇从孕前3周到产后2年进行了26次扫描。扫描分布在孕前(4次扫描)、第一孕期(4次扫描)、第二孕期(6次扫描)、第三孕期(5次扫描)和产后(7次扫描);刻度标记表示收集主要测量数据的时间,颜色表示孕期阶段。参与者通过体外受精(IVF)实现怀孕,这使得精确绘制排卵、受孕和孕周成为可能。
d, 整个实验期间大脑测量的总结(即总计)。广义加性模型显示,灰质体积(GMV)、皮层厚度(CT)和总脑体积在整个孕期减少(见方法部分使用三次回归进行验证),产后略有恢复。全局QA(白质定量各向异性)、侧脑室和脑脊液体积在整个孕期呈非线性增加,在第二和第三孕期明显上升,然后在产后急剧下降。阴影区域表示95%置信区间;实线表示模型拟合;虚线表示分娩时间。
从基线到产后的全脑动态变化
首先,我们描述了整个实验窗口期间(基线至产后2年,26次扫描;图1d)的广泛神经解剖学变化。广义加性模型揭示了受孕后周数与总体脑部指标之间存在强烈的非线性关系(有效自由度>3)。总灰质体积(GMV)(F = 27.87, P < 0.001, 解释偏差 = 93.9%, R2adj = 0.91)、皮层厚度(CT)总结(F = 15.79, P < 0.001, 解释偏差 = 78.6%, R2adj = 0.75)和总脑体积(F = 26.12, P < 0.001, 解释偏差 = 93.4%, R2adj = 0.90)在妊娠期间线性下降,并在产后似乎部分恢复。相比之下,白质的全局微观结构完整性(QA)在第一和第二孕期增加,然后在产后恢复到基线水平(全脑QA, F = 4.62, P = 0.007, 解释偏差 = 60.2%, R2adj = 0.51)。我们还观察到侧脑室扩张(F = 10.44, P < 0.001, 解释偏差 = 83.8%, R2adj = 0.77)和脑脊液增加(CSF; F = 13.32, P < 0.001, 解释偏差 = 83.8%, R2adj = 0.79)的非线性模式,在第二和第三孕期上升,然后在产后急剧下降。
与妊娠相关的皮质体积和厚度变化
然后,我们将焦点缩小到妊娠期内发生的变化(基线至孕36周,19次扫描)。在妊娠期间,总体脑部指标之间的关系如下:总脑体积、GMV(灰质体积)和CT(皮层厚度)彼此呈正相关,而侧脑室、CSF和全局QA(白质定量各向异性)与GMV呈负相关(补充图1)。
GMV的变化几乎遍及整个皮质表面(图2a)。大多数大尺度脑网络表现出GMV的下降(图2b和补充表1);实际上,80%的400个感兴趣区域(ROI)显示GMV与孕周之间存在负相关(图2a和补充表2)。总的来说,这些结果提供了证据,表明整个妊娠期间皮质体积普遍减少。几个感觉和注意力子网络对妊娠特别敏感,包括控制(子网络B)、突显/腹侧注意(子网络A)、背侧注意(子网络B)、默认(子网络A)和体感运动(子网络A和B)网络(补充表1)。驱动这些网络水平变化的区域包括双侧顶下小叶、中央后回、岛叶、前额叶皮质、后扣带回和体感皮质(图2c、补充表2,以及使用替代流程验证结果的补充表1和3)。通过随后控制总GMV的分析确定,这些区域和相关的脑网络在整个妊娠期间似乎比大脑其他部分更快速地减少体积(补充表1和2)。GMV的减少也与参与者的雌二醇和孕酮浓度显著相关(补充表1)。在检查妊娠相关的CT(皮层厚度)变化时,观察到非常相似的结果模式(补充图3和补充表4和5)。在控制标准质量控制(QC)指标后,妊娠期间皮质GMV的显著减少仍然存在,尽管对观察到的效应的大小和位置有一些影响(补充图4和5)。
图2:皮质GMV在妊娠期和产后显示广泛变化。
a, 多变量回归分析揭示妊娠周数与区域GMV之间主要存在负相关关系,只有少数区域在妊娠窗口期(基线至36周)不受影响或增加。此处呈现的所有关联都经过多重比较校正(FDR在q < 0.05;为便于解释,非显著值设为零)。
b, 通过估算从基线(初始)到孕36周(最终)的GMV百分比变化来计算平均网络变化。注意力和控制网络似乎受影响最大。
c, 六个代表性区域,按主要子网络分类,展示了整个妊娠期间明显的GMV变化。对于每个面板,我们显示了ROI的平均GMV与孕周之间的散点图(左;仅妊娠阶段,19次扫描),以及整个研究期间按妊娠阶段划分的ROI的GMV总结(右;妊娠和产后阶段,26次扫描)。散点图中的阴影区域表示95%置信区间。每个箱线图代表每个阶段的四分位范围(IQR),水平线表示中位数。须线表示该范围之外(±1.5)的变异性。外部值是超出箱体任一端1.5倍至3倍IQR的值。所有统计检验都经过多重比较校正(FDR在q < 0.05),数值经过z分数标准化并转换为均值为零、标准差为1,以便更容易在区域间进行比较。请注意,此处显示的数据值是原始值(见补充表1和2以及补充数据1获取详尽列表)。脑可视化使用R包ggseg创建。
IQR,四分位范围;Lat,侧面;Med,内侧面;DMN,默认模式网络;VisPeri,视觉周边网络;SomMot,体感运动网络;VisCent,视觉中央网络;Cont,控制网络;TempPar,颞顶网络;DorsAttn,背侧注意网络;SalVentAttn,突显/腹侧注意网络。
相比之下,默认模式网络(子网络C)、边缘系统(子网络A和B)和视觉周边网络中的某些区域的GMV与全局趋势相反,呈现轻微增加(例如,颞极)、保持不变(例如,眶额皮质)或以比总GMV慢得多的速度减少(例如,纹外皮质)(图2a,b和补充表1和2)。这些区域的CT变化呈现类似的模式(补充图3和补充表4和5)。
与妊娠相关的皮层下GMV变化
与更广泛的皮质GMV减少一致,几个皮层下区域在整个妊娠期间显著减少体积(图3a,左)。这包括双侧腹侧间脑(右半球的值显示在图3a,右;包括下丘脑、黑质、乳头体、外侧膝状体和红核等)、尾状核、海马和丘脑,以及左侧壳核和脑干(补充表6, q < 0.05)。
图3:皮层下GMV在整个妊娠期间发生变化。
a, 多变量回归分析揭示在妊娠期间,孕周与皮层下GMV区域之间主要存在负相关关系,包括双侧丘脑、尾状核、海马、腹侧间脑(包括下丘脑、黑质、乳头体和红核)和左侧尾状核。侧脑室是唯一与孕周呈正相关的结构(也在图1d中描绘)。此处显示的全脑皮层下GMV估计是通过FreeSurfer和'aseg'皮层下分割得到的。FDR校正,q < 0.05。插图:右腹侧间脑与孕周显示最强的负相关(左;基线至36周,19次扫描),并且在产后未恢复到基线水平(右;妊娠和产后,26次扫描)。
b, 参与者的海马及其周围皮质被分割为七个双侧亚区。二次(CA1, CA2/CA3)和线性回归分析(海马旁皮层,PHC)显示,这些亚区与孕周呈负相关(基线至36周,18次扫描),并且在产后未恢复到基线水平(妊娠和产后,25次扫描)。散点图中的阴影区域表示95%置信区间。每个箱线图代表每个阶段的四分位范围(IQR),水平线表示中位数。须线表示该范围之外(±1.5)的变异性。外部值是超出箱体任一端1.5倍至3倍IQR的值。FDR校正,q < 0.05。
对于a和b,为便于解释,非显著区域被设置为零。请参见补充图6以获取两种分割中区域的完整标记。脑可视化使用R包ggseg创建。DC,间脑。
接下来,对内侧颞叶(MTL)进行高分辨率分割使我们能够以更精细的分辨率检查皮层下结构,揭示了CA1(F(2,15) = 5.84, q = 0.031, R2adj = 0.36; 图3b,左)和CA2/CA3(F(2,15) = 6.82, q = 0.027, R2adj = 0.41; 图3b,中)在整个妊娠期间的非线性体积减少。海马旁皮层(PHC)在整个妊娠期间表现出线性体积减少(F(1,16) = 24.87, q < 0.001, R2adj = 0.58; 图3b,右),这也与雌二醇水平相关(F(1,12) = 20.21, q = 0.005, R2adj = 0.60)。在对总GMV进行比例校正后,这三种关系仍然显著。海马体的其他亚区或总体积,以及海马旁回没有显示出显著变化(补充表7和补充图8)。
与妊娠相关的白质微观结构变化
与全局GMV的减少相反,对白质进行的相关性纤维束追踪(用于检测数据中的线性趋势)揭示,在妊娠期间全脑的微观结构完整性增加(图4a),这与17β-雌二醇和孕酮的上升同步(所有q < 0.001;补充图9)。与孕周显示出强相关的纤维束包括胼胝体、弓状束、下额枕束和下纵束(图4b),以及扣带束、中纵束和上纵束、皮质纹状体束、皮质脊髓束和皮质桥脑束(完整列表见补充表9)。
图4:白质微观结构在整个实验期间发生变化。
a, 相关性纤维束追踪分析(FDR, q < 0.0001)确定,随着孕周的推进(基线至36周,16次扫描),许多白质纤维束表现出定量各向异性(QA)的增加。见补充表9获取QA(白质定量各向异性)与孕周显著相关的纤维束完整列表。
b, 与妊娠显著相关的代表性感兴趣区(ROI)在不同妊娠阶段(妊娠和产后,23次扫描)的QA值总结。使用基于ROI的纤维束测量法提取QA值。每个箱线图代表每个阶段的四分位范围(IQR),水平线表示中位数。须线表示该范围之外(±1.5)的变异性。外部值是超出箱体任一端1.5倍至3倍IQR的值。数值经过z分数标准化并转换为均值为零、标准差为1,以便更容易在不同纤维束间进行比较。
AF,弓状束; C,扣带束; CC,胼胝体; CPT,皮质桥脑束; CS,皮质纹状体束; CST,皮质脊髓束; DT,齿状红核丘脑束; IFOF,下额枕束; ILF,下纵束; MLF,中纵束。
比较妊娠期间的脑部变化与对照组
然后,我们将妊娠期间的GMV变化与典型的随时间变化进行比较,后者来自8名密集采样的对照组。我们在妊娠期间观察到的GMV变化远远超过正常的大脑可变性(补充图11)。平均而言,皮质GMV的变化几乎是在相似时间段内扫描的对照组的三倍(补充图11a,b)。这一点延伸到内侧颞叶亚区,其中妊娠期间的体积变化是正常大脑可变性的三到四倍(补充图11c,d)。我们通过将妊娠期GMV变化与参与者的孕前大脑体积进行比较,进一步将这些发现置于背景中;妊娠期间的平均GMV变化是基线会话之间观察到的可变性的六倍(皮质)和三倍(内侧颞叶)。
讨论
跨哺乳动物物种的汇聚证据表明,妊娠是一个显著的神经可塑性时期,揭示了大脑在青春期之后仍能经历适应性的、激素驱动的神经解剖学变化的能力。比较女性在孕前和产后的研究为迄今为止人类大脑经历此类神经变化提供了最强有力的证据。但是妊娠本身呢?母体大脑的解剖学变化在什么时间尺度上表现出来?它们是否与性激素产生的大幅增加有关?在这里,我们开始解答这些悬而未决的问题。这项研究及其相应的开放获取数据集为神经科学家提供了一个贯穿妊娠期的人类大脑详细地图,这是一个资源,可以用来探索以前无法获得的广泛的神经生物学问题。
我们从这项精密成像研究中的发现表明:妊娠的特征是GMV减少、皮质变薄和白质微观结构完整性增强,这些变化逐周展开。这些变化也与妊娠期间类固醇激素浓度的显著上升有关。其中一些变化在产后2年仍然持续(例如,GMV和CT的全局减少),而其他变化,包括白质完整性的标志,似乎是暂时的。脑室的扩张和收缩与这些皮质变化平行。这些广泛的模式,以及妊娠期间脑脊液体积的显著增加,可能反映了水分滞留的增加和随后的皮质组织压缩。然而,这些变化在产后2年的持续性以及GMV(灰质体积)、CT(皮层厚度)和QA的区域变异,暗示了细胞层面的基础,如胶质细胞或神经元数量、突触密度和髓鞘化的改变(关于后者的综述,见参考文献4)。未来研究流体动力学与体积变化之间的关系将有助于澄清驱动妊娠期全局神经变化的因素;这些见解将对孕产妇健康产生广泛影响(例如,与子痫前期或水肿相关的神经系统影响)。
至关重要的是,动态的神经变化发生在妊娠窗口本身,这种细微差别无法被仅限于比较孕前和产后的研究所捕捉。例如,我们观察到在妊娠的第一和第二孕期,白质微观结构完整性(QA)大幅增加,但这些测量值在第一次产后扫描时完全恢复到基线水平。这种模式可能解释了为什么先前的研究报告没有发现与妊娠相关的白质纤维束追踪差异。其他测量,如GMV和CT,在整个妊娠期间减少,并在产后仅显示出轻微反弹。这些非线性模式表明,仅量化孕前和产后的大脑结构可能会忽视在妊娠窗口内展开的全部变化范围,并低估妊娠期间大脑的变态。此外,尽管观察到的变化主要是全局性的,但一些区域显示出显著的稳定性(例如,纹外皮质)。与孕周关系最强的皮层下区域是腹侧间脑,其包括下丘脑及随后的内侧视前区和室旁核——这些结构对诱导母性行为至关重要。海马体在整个妊娠期间表现出体积减少,通过更高的空间分辨率,揭示这种减少是由CA1和CA2/CA3亚区体积的变化驱动的,而其他海马亚区保持稳定。内侧颞叶内的邻近海马旁皮层(PHC)也表现出在妊娠期间的体积减少。虽然我们的海马发现与妊娠的前/后研究一致,但在妊娠期内应用的精密成像揭示了这种减少的非线性性质。重现和阐明这些在整个内侧颞叶中区域特异性的体积变化模式值得进一步研究。
类似的精密成像研究已经捕捉到了其他神经内分泌转变期间的动态大脑重组,例如月经周期(见参考文献28中的综述),强调了类固醇激素在塑造哺乳动物大脑中的强大作用。妊娠期间的内分泌变化远远超过月经周期期间发生的变化,这突出了绘制大脑对这种独特激素状态反应的关键需求。与类固醇激素的上升同时发生的广泛生理变化包括体重组成、水分滞留、免疫功能和睡眠模式的变化。这些因素可能在这里观察到的大脑变化中起作用,其中一些驱动神经生物学变化,而其他因素,如水分滞留,可能影响基于MRI的测量。需要注意的是,尽管妊娠期间皮质GMV的减少在各种分析中保持稳定,但考虑到QC测量影响了这些结果的大小和位置。这些指标都在标准范围内,但可能存在与体积减少相伴的有意义的信号减少(例如,脑脊液增加和灰质减少)——这是一个超出本资源研究范围的方法学细微差别。最终,识别这些因素对妊娠期间展开的神经解剖学变化的共同和独特贡献值得进一步研究。对大规模和多样化的妇女群体在整个妊娠期进行深度表型分析将开辟新的探索途径,例如,允许研究人员将基于血液的蛋白质组学特征与妊娠结果联系起来;部署可穿戴设备监测睡眠、认知和情绪的变化;以及探索影响孕产妇健康的更广泛的社会和环境决定因素。
在母性发展(matrescence)期间展开的神经解剖学变化可能对理解个体在亲子行为、精神健康障碍易感性和大脑老化模式方面的差异具有广泛影响。GMV的减少可能反映了神经调节激素对大脑的"微调",为亲子关系做准备。例如,在啮齿类动物中,类固醇激素通过重塑下丘脑内侧视前区的特定神经回路来促进亲子行为。这些行为适应对于母亲满足照顾后代的需求至关重要。人类研究揭示了大脑中对社会认知重要的区域的GMV减少,这些变化的幅度与亲子依恋的增加相对应。对细胞和系统水平机制的更深入检查将提高我们对妊娠如何重塑特定回路以促进母性行为的理解。
尽管研究较少,但母性行为与白质微观结构(特别是颞叶和枕叶之间的连接)之间的联系已被注意到。在这里,我们揭示了在妊娠窗口期间感觉、注意力和默认模式网络内区域的显著GMV变化。与此同时,我们观察到促进情感和视觉处理中枢之间通信的白质纤维束的各向异性增加,包括下纵束和下额枕束。精确定位在母体大脑中展开的灰质和白质变化的同步性可能是理解妊娠期间和之后出现的行为适应的关键,例如调整大脑对婴儿线索的视觉和听觉反应,并引发母性行为。对其他主要过渡期的研究支持这一观点。例如,青春期是一个动态时期,其特征是区域特异性、非线性的GMV减少和WMV(白质体积)增加,这些成熟的大脑变化与执行功能和社会认知的提高有关。对于青春期41和母性发展期,类固醇激素产生的显著增加似乎重塑了大脑(见参考文献25的比较分析),促进了一系列适应该生命阶段的行为。具体的神经变化如何导致特定的行为适应在人类妊娠方面尚未被充分探索。
这项精密成像研究在单个个体身上绘制了妊娠期间的神经解剖学变化,这限制了我们将结果推广到更广泛人群的能力。为了对我们的发现进行基准测试,我们将整个妊娠期观察到的GMV变化幅度与在类似时间跨度内采样的非孕妇女的数据进行了比较。这样做提供了令人信服的证据,表明与妊娠相关的神经解剖学变化远远超过正常的日常大脑可变性和测量误差。有证据表明,白质微观结构在六个月的时间里保持相当稳定但需要更多研究来比较妊娠期间观察到的白质变化程度与随时间推移的正常变化。此外,对更大规模的女性群体进行采样将产生急需的妊娠期大脑变化的规范模型(类似于参考文献43),以确定在妊娠和产后恢复期间预期的典型神经解剖学变化程度。
这些发现为在人口统计学上更加丰富的群体中进行进一步的妊娠精密成像研究提供了关键理由,以确定这些适应的普遍性和特异性及其在孕产妇健康中的作用。我们参与者中观察到的变化是否反映了更广泛人群的情况?偏离常态是否会导致适应不良的结果?精密成像方法可以帮助确定妊娠诱导的神经解剖学变化的速度是否会导致女性大脑健康结果的分歧,就像在其他快速大脑发育期可能出现的情况一样。五分之一的女性经历产前和产后抑郁,虽然现在已有FDA批准的首个治疗方法,但早期检测仍然难以实现。精密成像研究可能为个体在症状出现前患抑郁症的风险或抵抗力提供线索,帮助临床医生更好地确定何时以及如何进行干预。神经科学家和临床医生也缺乏工具来促进检测和治疗与妊娠同时发生、加重或缓解的神经系统疾病,如癫痫、头痛、多发性硬化症和颅内高压。对母体大脑的精密绘图为更深入理解妊娠期间展开的微妙而广泛的结构、功能、行为和临床变化奠定了基础。这些研究将推进我们对人类大脑的基本理解,以及其在成年期经历长期可塑性的显著能力。