手机和社交媒体成瘾者的功能性脑网络改变

如今,无限制地访问互联网可能导致普遍的互联网滥用和依赖。目前,智能手机和社交媒体使用属于最普遍的互联网相关行为成瘾形式。然而,这些互联网相关行为成瘾的神经生物学背景尚未得到充分研究。在本研究中,通过自我报告问卷评估了这些成瘾形式。对所有参与者(n=59,29名男性)进行了静息态功能磁共振成像以检查功能性脑网络。使用独立成分分析发现的静息态网络被分析以估计网络内的差异。发现,社交媒体成瘾和智能手机成瘾与多个神经网络的功能连接呈现显著负相关,这些网络包括:语言网络、外侧视觉网络、感觉运动网络、执行控制网络以及额顶网络。研究结果显示,过度使用智能手机和社交媒体会影响个体的感知处理能力和高级认知功能。本文发表在Brain Imaging and Behavior杂志。

引言
     目前,最快速增长的行为问题是问题性互联网使用(PIU),它已引起全球关注(Dieter等,2017),并已成为严重的公共健康威胁(Sevelko等,2018)。PIU的临床特征与物质使用障碍相似,包括失控使用、对互联网的强迫性思维和忽视日常生活(Csibi等,2018)。然而,除互联网游戏障碍(IGD)外,互联网使用相关障碍尚未被列入《精神障碍诊断与统计手册》(DSM-5;美国精神病学协会)。

     社交网站(SNS)使用户能够与朋友社交并获取他人信息(Park & Kim,2013)。过度使用社交网络服务可能导致PIU的一种特殊形式,即对SNS(社交网站)的不适应性依赖(He等,2017)。过度使用SNS常与过度使用智能手机相关,因为智能手机已成为访问互联网和社交网络最普遍的方式(Lee等,2021)。智能手机提供的活动可能导致诸多负面后果。已有报告显示多种身体和心理影响,包括精神疲劳、低自尊和抑郁或心境恶劣倾向(Wilmer等,2017)。

      互联网相关成瘾是相对较新的术语,其神经生物学机制仍未完全理解。静息态功能连接(rs-FC)分析允许识别多种神经精神疾病(包括成瘾)中的神经回路功能障碍。Rs-FC回路改变较少受到基于细微任务范式的干扰,所识别的网络在个体间和个体内随时间保持一致,且反映了任务处理的认知要素(Sutherland等,2012)。独立成分分析(ICA)是评估静息态数据的可靠且常用方法。在ICA中,复杂数据可以分解为独立的子部分(称为成分),揭示大脑的一致性静息态网络(RSNs)(Pariyadath等,2016)。这些RSNs与已知的感觉、运动和认知功能相关的功能系统架构相一致(Wang等,2017),并被证实在人类行为中发挥作用(He等,2017)。

     先前的静息态研究显示,默认模式网络(DMN)—即清醒个体未执行任何特定任务时激活的网络—在PIU(问题性互联网使用)者中发生改变(Wang等,2017,2019)。进一步的静息态研究发现问题性互联网使用者的视觉注意网络发生改变(Wang等,2019)。在PIU中还发现额顶网络(FPN)受损(Hong等,2013;Wang等,2017),该网络与广泛的认知任务相关。突显(SN)参与将注意力定向于相关刺激(Pariyadath等,2016)。研究发现它在PIU中也发生改变。在社交网络和智能手机成瘾者中发现主要两个注意网络存在功能障碍(Wang等,2019)。关注智能手机过度使用的静息态功能磁共振成像研究也证实了这些网络中的一些参与。Ahn等(2021)发现问题性智能手机使用者的突显网络和DMN之间功能连接增强。Liu及其同事还发现问题性智能手机使用者的额顶网络内静态功能连接增强(Liu等,2022,综述见Montag & Becker,2023)。

      在本研究中,我们调查智能手机成瘾和社交网络成瘾是否与RSNs的功能性脑改变相关。为了探索脑功能连接的完整模式,我们使用ICA,然后通过双回归检查网络内连接性,通过FSLNets检查网络间连接性。我们认为,通过使用全脑方法而不是使用少量预先确定的种子区域(如先前研究所做的那样),我们可以为互联网相关成瘾的潜在神经机制提供更完整的图景。与先前研究相比,我们这里研究年轻成年人(一些先前研究关注青少年),我们评估SNS和智能手机过度使用(先前的静息态研究仅关注PIU和在线游戏),如前所述,我们使用全脑方法而不是使用预定义的感兴趣区域或网络。

方法
参与者
      

      通过在线问卷招募参与者。从523名完成问卷的申请者中,随机选择72名(36名男性)。所有参与者均健康,年龄在18至30岁之间(平均值±标准差:24.69±3.23岁)。所有参与者都进行了简短的电话面试以筛除有神经系统问题的个体。未纳入患有慢性疾病、神经系统或精神疾病的受试者。根据爱丁堡利手量表(Oldfield,1971),所有参与者均为右利手(范围0.40-1.00)。一名在磁共振成像期间头部运动过大的参与者被排除在研究之外。根据贝克抑郁量表(BDI)(Beck等,1961),九名受试者显示中度或重度抑郁症状,放射科专家发现三名受试者有轻微解剖异常,他们被排除在进一步分析之外。因此,最终组包括59名(29名男性)参与者。每个人在测量结束时都获得了少量参与费用。本研究已获得国家医学研究委员会批准。本研究中进行的所有程序均符合机构和国家研究委员会的伦理标准以及1964年《赫尔辛基宣言》及其后续修订或可比较的伦理标准。所有参与者均签署了书面知情同意书。

问卷
     由于互联网相关成瘾尚无广泛接受的诊断标准或临界点,强烈建议使用问卷测量过度互联网使用,并将分数作为连续变量使用(Poli,2017)。

    Bergen社交媒体成瘾量表(BSMAS)已由Bányai等人(2017)验证。该工具用于识别问题性社交媒体使用的征兆。本文中的版本包含6个条目,采用5点量表(从不到总是)作答。这些条目的开发旨在涉及前述六个核心成瘾标准(显著性、耐受性、情绪改变、戒断症状、冲突和复发)。

    同时使用了智能手机应用程序成瘾量表(SABAS)(Csibi等,2018),这是一个自我报告问卷,旨在筛查智能手机应用程序成瘾风险。它包含六个涉及成瘾核心标准的条目。这些条目使用6点李克特量表评分,从1(强烈不同意)到6(强烈同意)。SABAS得分越高表示发展成智能手机应用程序使用成瘾的风险越大。

扫描程序
     在扫描仪中,要求参与者休息并保持眼睛睁开10分钟,同时注视黑色背景上的白色注视十字。要求参与者保持清醒并尽量不要思考任何事情。使用Presentation软件实现范式,并使用MRI兼容LCD屏幕呈现刺激。

MRI数据采集
     所有测量都在3T MAGNETOM Prismafit人体全身MRI扫描仪(Siemens AG,Erlangen,Germany)上进行,使用20通道头/颈线圈。

     功能图像采用标准2D平面回波成像(EPI)序列获得,参数如下:TR/TE:3000/30 ms;翻转角(FA):83°;视野(FOV):210×210 mm²;70×70矩阵;44个轴向切片,厚度3 mm;2040 Hz/像素接收带宽,无间隙;交错切片顺序以避免连续切片之间的串扰。

     为了失真校正,使用了场图序列(TR/TE1/TE2 = 480/4.92/7.38 ms;翻转角 = 60°;44个轴向切片;FOV = 210×210 mm²;矩阵大小 = 70×70;接收带宽 = 290 Hz/像素),体素大小相同。

    用于配准目的的解剖结构图像采用T1加权轴向3D-MPRAGE序列获得(TR/TE/TI:2530/3.4/1100 ms;FA:7°;FOV:256×256 mm²;256×256矩阵;切片厚度:1 mm;176个切片,200 Hz/像素接收带宽)。

fMRI数据预处理

     预处理步骤包括:MCFLIRT运动校正、层采样时间校正、脑提取、5毫米全宽半高(FWHM)的空间平滑、使用FSL FUGUE的EPI失真校正、FSL FIX以及100秒的高通时间滤波。单次会话的数据集通过两步过程配准到MNI152标准空间。首先,使用BBR(6个自由度),将每个受试者的功能(EPI)图像配准到其T1结构扫描。然后,使用12个自由度的线性拟合,将每个受试者的T1图像配准到2毫米的MNI152标准空间T1图像,随后进行非线性配准(FNIRT,变形分辨率=10毫米)。接下来,对于每个受试者,将这两个配准步骤组合起来,应用于一级统计图,以将它们映射到标准空间。

网络内分析     

     为识别RSNs(静息态脑网络),使用FSL MELODIC中的ICA对预处理的功能数据进行时间串联以创建单一数据集。将这个串联数据分解为25个独立成分(ICs)以创建研究特定的RSNs平均值。这个维度数量与一些能够可靠探索RSNs的先前研究一致(Damoiseaux等,2006;Nomi & Uddin,2015;Smith等,2014)。此外,小维度通常提供整体静息态网络的估计,而高维度用于定义较小的节点。确定六个成分为与运动、生理和扫描仪相关效应有关的噪声伪影(成分20-25)。其余19个感兴趣的ICs(独立成分)用于进一步分析。在视觉检查之后,我们还使用FSL的fslcc命令对19个ICs与Smith等(2009)获得的著名RSN模板进行空间相关。

      为检查网络内FC的差异,应用了FSL(v6.0)中的双回归方法。这种方法允许我们进行RS功能连接的体素水平比较。在第一阶段,将群组平均空间图集对每个受试者单独回归到受试者的4D时空数据集中。这产生了一组受试者特定的时间序列,每个群组水平IC对应一个。在第二阶段,将受试者特定的时间序列回归到相同的4D数据集中,产生一组受试者特定的空间图,每个群组水平IC对应一个。使用5000次置换的非参数置换检验来创建问卷得分的相关图。使用无阈值簇增强方法对结果相关图进行阈值处理,α水平为0.05(家族误差率-FWE-校正)。在回归模型中使用抑郁得分(BDI)和焦虑得分(特质焦虑量表)作为协变量。由于问卷得分之间存在高度相关(如表1所示),SABAS和BSMAS得分首先分别评估,然后将两个变量用于共同统计模型以探索独立效应。

表1 自我报告问卷的描述性统计

图片

网络间分析
      使用在MATLAB中实现的FSLNets v0.6分析包检查网络间连接。这种方法涉及从双回归中获取每个受试者的时间曲线,以进行网络间比较。该方法的目的是确定ICs之间如何相关(Smith等,2014),得到一个19×19的相关矩阵。为了更好地估计节点间的直接连接,使用偏相关系数(在岭回归选项中rho=0.1),这些系数通过Fisher变换将Pearson r值转换为z统计量。随后使用FSL randomize进行5000次置换(FWE校正)以预测问卷得分与偏相关值之间的关系。抑郁得分和焦虑得分被用作协变量。

结果
      自我报告问卷数据的描述性结果和它们之间的相关系数总结在表1中,而问卷得分的分布如图1所示。

图片

图1 显示问卷数据分布的直方图。

BSMAS:Bergen社交媒体成瘾量表;SABAS:智能手机应用程序成瘾量表

双回归组ICA
     根据Smith等人(2009)的模板,我们揭示了三个视觉成分(内侧视觉网络、枕叶极和外侧视觉网络)、DMN(默认模式网络)、感觉运动网络、听觉网络、执行控制网络以及左右额顶网络(所有情况下空间相关系数都高于0.3)(图2)。

图片

图2 独立成分分析揭示的19个成分

     听觉网络:IC 14、IC 18;默认模式网络:IC 1、IC 3、IC 6;执行控制网络:IC 7、IC 10;语言网络:IC 11;外侧视觉网络:IC 2;左额顶网络:IC 8、IC 9;内侧视觉网络:IC 5;枕叶极:IC 12、IC 19;右额顶网络:IC 4、IC 16;感觉运动网络:IC 13、IC 15、IC 17。红黄色条表示Z分数范围从3.0到32.27

    由于扫描过程中小脑覆盖不完整,本研究中未出现小脑RSN。根据Smith的模板,两个成分(IC 6和IC 11)无法识别(空间相关系数低于0.3);因此,我们使用斯坦福神经精神疾病实验室功能成像实验室(Shirer等,2012)制作的功能网络模板(http://findlab.stanford.edu/functionalROIs.html)来识别这些成分。相应地,IC 6代表包含(腹侧)默认模式网络体素的成分,IC 11包含语言网络的体素。

网络内与问卷得分的相关性
      四个成分与BSMAS显示负相关。这些成分包含语言网络(IC 11)、感觉运动网络(IC 13)、双侧执行控制网络(IC 7)和外侧视觉网络(IC 2)的体素。IC 11中的功能连接与SABAS量表显示负相关。这个IC代表包含语言网络体素的网络(表2,图3)。在共同统计模型中,SABAS还对左额顶网络(IC 9)显示负独立效应。未发现其他显著结果。

表2 与问卷得分显示负相关的独立成分。报告了FWE校正(跨体素多重比较)的P值

图片

图片

图3 群组水平负相关:A) BSMAS与IC 2(外侧视觉网络)、IC 7(执行控制网络)、IC 11(语言网络)、IC 13(感觉运动网络)内的功能连接;

B) SABAS与IC 11(语言网络)内的功能连接;以及C) SABAS(当BSMAS效应被回归出)与IC 9(左额顶网络)内的功能连接。

SABAS:智能手机应用程序成瘾量表;BSMAS:Bergen社交媒体成瘾量表;蓝-浅蓝色条表示FWE校正的P值。轴向切片以放射学约定显示

网络间连接

      未发现显著结果。

讨论

     在本研究中,我们调查了智能手机和社交网络成瘾是否与已知RSNs内部和之间的功能连接改变相关。我们发现了一些显著关联,将分别讨论。

     外侧视觉网络和感觉运动网络被发现与社交媒体成瘾有关。这些发现与之前研究网络游戏障碍(IGD)的研究一致,即增加的视觉刺激会改变视觉系统。关注IGD的研究揭示了视觉网络内部以及视觉区域与其他RSNs(如听觉、体感和视空间网络)之间功能连接的增强(Dong等,2012;Wang等,2016;Zheng等,2019)。这些文章的作者推测,长期的在线游戏体验可能会增加视觉网络中的功能连接,并增强玩家在视觉、感觉运动、听觉和视空间系统之间的协调能力。然而,其他网络相关成瘾形式的研究很少,只找到了间接的、非决定性的证据;例如,Wang等(2019)发现视觉注意网络功能降低,这解释了问题性互联网使用(PIU)和视觉注意力缺陷之间的关联,但这些缺陷的主要原因可能是注意力缺陷本身,而不是视觉网络的改变。此外,Horvath等(2020)发现智能手机成瘾通过与视觉和听觉处理相关的脑区对日常功能有负面影响。然而,日常功能障碍与智能手机成瘾之间的联系再次变得模糊。据我们所知,这是第一项显示问题性社交媒体使用与视觉网络功能连接呈负相关的直接证据的研究。需要指出的是,与IGD(网络游戏障碍)不同,这里的关系明显是负面的。这可能是由于与电脑游戏玩家相比,设备的视觉刺激和被动使用造成的。然而,由于缺乏行为证据,这种解释必须被视为推测性的。

     我们的数据驱动方法显示,语言网络中功能连接的降低与较高的SABAS和BSMAS得分相关,表明这些受试者的语言表现受损。据我们所知,这些情况下的语言网络改变之前没有被提供证据。只有一项研究调查了PIU中的语言技能。相应地,Nie等(2017)报告了严重问题性互联网使用者的语言表现显著较差。他们还称,无法确定现有的心理认知因素是PIU的原因还是反之。我们的结果表明,这些成瘾形式与语言功能之间存在直接关联,独立于其他认知领域。我们认为造成这些关联的主要原因可能包括:面对面社交的减少、交流方式的改变,以及视听技术的快速发展(Kraut等,1998;Soleymani & Farahati,2014;Venter,2017)。

     我们观察到的SABAS得分与负责控制和执行功能的执行控制网络和左额顶网络的功能连接呈负相关并不令人惊讶。我们的发现支持这样一个假设:执行功能受损和抑制控制减弱在成瘾的发病机制和维持中起着关键作用(Horvath等,2020;Lin等,2015;Sharifat等,2018;Wang等,2019;Wilmer等,2017)。

     存在一些需要考虑的局限性。最显著的是缺乏关于语言表现的行为数据。尽管之前一项研究揭示了PIU中的语言流畅性受损,但没有行为数据,我们结果的解释仍存在不确定性。研究的横断面性质限制了我们区分因果关系的能力。无法确定功能连接的改变是导致成瘾行为还是反之。要获得更清晰的图景,需要纵向研究。我们研究结果的推广可能会因为大多数参与者在问卷中报告低分或中等分数而减弱。未来有成瘾群体和年龄-性别-教育匹配的对照组的新研究将克服这个问题。另一个局限是BSMAS和SABAS得分之间的高度相关性,这使得相关结果的解释变得困难。

结论
      总的来说,智能手机和社交媒体成瘾导致视觉和语言网络中的功能连接降低。此外,具有高度智能手机成瘾的人群中,执行控制网络和额顶网络显示网络内功能连接降低。这些发现解释了文献中先前报告的语言流畅性表现下降的神经基础。此外,我们认为花在屏幕媒体设备上的时间增加对视觉网络的功能组织有负面影响。然而,重要的是要强调,在没有完善的纵向研究的情况下,因果关系的解释应该谨慎。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值