正念专业水平的功能连接组指纹识别

背景:

     短期正念干预因其在各种场景中对幸福感、认知和临床症状的积极影响而在研究中备受关注。然而,这些短期训练被视为更广泛转化路径中的初步步骤,可能导致持久的特质改变。尽管如此,关于这些冥想特质的大脑相关性仍知之甚少。

     方法: 

     为弥补这一差距,我们研究了长期佛教修行者的冥想专业水平的神经相关性,比较了28名专家冥想者与47名匹配的新手的大规模脑功能连接。我们的假设认为,冥想专业水平会与特定和持久的功能连接模式相关,这种模式在冥想状态(开放式监督/开放存在以及慈悲冥想)和非冥想休息状态下都存在,可通过连接梯度来测量。

      结果:
      将支持向量分类器应用于训练中未包含的状态,我们成功将专业水平解码为一种特质,证明了其非状态依赖性质。专业水平的特征进一步表现为大规模脑网络的整合度增加,包括背侧和腹侧注意网络、边缘网络、额顶网络和躯体运动网络。后者与创造心理距离以远离思维和情绪的能力增强相关。

      结论: 

      冥想专家中身体映射与情感和注意网络之间的这种增强整合,可能指向这些观想修行所培养的具身认知的特征。本文发表在Biological Psychiatry: Global Open Science杂志。

 

关键词:认知解离、连接组、专业水平、冥想、正念、特质

正文:

     短期8周正念干预在各种临床和教育环境中常规使用,可以积极影响幸福感和认知,并减少临床症状,特别是情绪障碍。正念干预可以引起情感和注意力相关神经过程的功能变化,这些变化并不总是伴随结构性改变,后者在数年冥想训练后才会出现。根据传统冥想理论,这些短期训练效果仅是更具转化性路径中的初步阶段,最终导致认知和自我相关过程的长期特质改变。我们此前报告发现,一组长期藏传佛教修行者相比匹配的新手具有更好的疼痛调节能力,更低的抑郁、焦虑和疼痛灾难化特质量表得分,报告有更高的认知解离技能、不同的疼痛调节策略和亲社会倾向。尽管长期冥想专业水平具有潜在的治疗和科学价值,但关于其神经生理机制仍知之甚少,初步研究中存在相互矛盾的发现。本研究旨在通过测量大脑内在连接网络组织的改变,研究这组长期佛教冥想者和新手样本中冥想专业水平的神经相关性。

      在这个传统中,导向专业水平的心智训练可以被概念化为通过练习各种冥想技术来熟悉自己心智的过程。发展轨迹通常始于培养正念和慈悲修行数年(详见补充材料),然后逐渐过渡到非二元冥想,如开放存在(OP)。这种修行旨在探索和洞察基本认知结构(如时间、自我和主客体导向)的建构性和短暂性。据说OP(开放存在)会引发最小现象意识状态,其中涉及主客体二元性的意向结构被削弱,这被非二元性的概念所捕捉。据说OP冥想会对认知和知觉产生长期的特质影响,因为正式的非二元冥想会逐渐自发地融入日常生活。基于对这种冥想专业水平的描述,我们的总体假设是专家的静息态(RS)脑活动会类似于他们在冥想状态(此处指开放式监督以及慈爱与慈悲[LKC])下的活动,特别是非二元状态(即OP)。我们预测,专家的任何持久性、特质性变化都会与新手相比在大规模脑功能上有特定变化,这些变化在冥想状态和非冥想静息状态下都可检测到。

      为探究长期冥想实践对大脑皮层内在功能组织的特质效应这一假设,我们采用了扩散嵌入法,也称为连接梯度。这种方法对解决我们的问题很有前景,原因如下:首先,其数据驱动方法克服了该领域传统假设驱动方法的局限性。其次,它可以检测到独立成分分析所遗漏的连接差异。这种技术可以揭示皮层组织的多个维度,第一维度描述认知层级,从感觉皮层开始到默认模式网络(DMN)等跨模态区域结束。第二梯度将视觉区域与其他网络分离,第三梯度跨越多重需求网络和对立端网络。先前研究表明,这些梯度可受多种因素影响,包括抑郁和自闭症谱系障碍等疾病,以及认知和心理情感训练。

    我们将这3个梯度作为三维空间中的连续坐标,计算所有脑顶点在这个三维空间中的离心率,即它们到重心的距离。基于这种方法,我们使用了一组专门的测量方法,用于量化连接衍生流形中功能社区内部和社区之间的分散度。因此,这些被选为表征整个脑连接组及其功能社区内部和社区之间与冥想专业水平相关变化的最佳候选指标。

     鉴于文献中关于冥想专业水平的数据稀少以及连接梯度方法的新颖性,进一步发展更精细的功能假设具有挑战性。然而,我们可以识别出可能受影响的候选脑网络。冥想主要与额叶和边缘网络的脑结构和功能变化相关,根据元分析,岛叶和前扣带皮层(属于突显网络)是对冥想训练最敏感的区域。关于冥想特质和功能连接的研究,或长期冥想修行者与新手之间的差异研究表明,具有冥想经验的个体在默认模式网络(DMN)与额顶网络(FPN)/突显网络之间表现出降低的连接性。但这些效果在研究间并不一致,因为冥想训练也与DMN和FPN/突显网络之间连接性的增加有关。

      一项近期研究报告了各种形式冥想训练对连接组的影响:类似于专注注意力/开放监督的注意力家族冥想训练增加了包括顶叶和后岛叶区域在内的功能分离,表明这些网络在功能上与其他皮层不同。相反,涉及自我和他人元认知和视角选择的训练则增加了这些区域与其他脑网络的功能整合。

     鉴于这两种训练可能与OP(开放存在)有一些共同特征(如元意识和去现实化),仅基于Valk等人的研究很难预测专家的离心率是会降低还是增加。此外,与这两种训练不同,OP(开放存在)旨在悬置主客二元性,这是一种与引起自我溶解的致幻剂共有的效果。考虑到后者已被证明会降低第一梯度内大规模网络的分离度,专家比新手表现出更低的离心率是合理的。在我们的探索性研究中,我们采用机器学习方法来揭示表征冥想专业水平的隐藏脑连接模式:我们在给定状态的子集上训练支持向量分类器(SVC)以区分专家和新手,然后测试其解码同一状态和推广到其他状态的能力。根据我们的假设预测,如果专业水平效应是每种状态中都存在的持久动态特征,则SVC应该也能推广到其他状态。然后我们使用这些测量来在多变量分析中表征专业水平,随后进行探索性单变量分析。我们进一步研究这些测量是否也能预测心理测量和冥想特质测量。

     因此,研究专家冥想者可能有助于发展关于冥想和非二元状态长期发展轨迹的假设或理论理解。

方法和材料

      参与者: 

      参与者被招募参加里昂脑与正念项目(2015-2018)中关于正念效应的横断面研究。参与者包括新手和长期冥想修行者(称为"专家"),经过多个筛选阶段招募。具体而言,长期冥想修行者应累计≥10,000小时经验,至少完成1次正式3年冥想闭关,并在研究前一年保持每天≥45分钟的规律练习。共有75名认知正常的参与者,年龄35至66岁(标准差7.7),包括28名专家冥想者和47名在年龄和性别上匹配的对照组参与者(称为"新手")(p > .5)(见表1)。新手在任何测量前参加了为期1周末的冥想训练项目,以熟悉冥想技术。入选和排除标准此前已报告。最后,参与者必须加入医疗保健系统。所有参与者在筛选环节获得实验程序信息并提供知情书面同意。研究及其分析获得区域人类研究伦理委员会批准。本研究样本量是基于另一项发表中的功能磁共振成像(fMRI)疼痛范式而确定。虽然fMRI数据的功效分析基于25名参与者的组大小(加3名参与者以适应人为数据),但我们对新手组进行了过度采样以增加问卷测量相关分析的功效。在排除运动超过0.3毫米/度的参与者(2名专家和3名新手)以控制潜在运动效应后,分析使用70名参与者的减少样本量。

表1. 人口统计学特征

图片

数值以平均值(标准差)或n表示。*表示高中后的高等教育年数。

BDI: 贝克抑郁量表; DDS: 德雷克塞尔解离量表; FFMQ: 五因素正念问卷。

范式: 

     所有参与者参加一次fMRI扫描,首先获取结构像。然后获取功能扫描,从静息态(RS)开始。我们还获取了慈爱与慈悲(LKC)冥想的冥想状态。此外,对新手获取开放式监督冥想状态,对专家获取开放存在(OP)冥想状态(冥想练习描述见补充材料)。所有状态持续10分钟。两种冥想状态的获取顺序随机。本研究使用3个心理测量量表,包括德雷克塞尔解离量表(DDS)、五因素正念问卷和贝克抑郁量表(详见补充材料)。

数据获取和预处理: 

     数据在3T西门子Prisma扫描仪上采集。功能数据使用回波平面成像获取(重复时间=2100ms,回波时间=30ms,39个切片,体素大小2.8×2.8×3.1mm³)。结构扫描包括T1加权(1mm各向同性体素)、T2加权(1mm各向同性体素)和T2*加权(1mm各向同性体素)。预处理使用fMRIprep 1.2.6版本,包括运动校正、配准、标准化到蒙特利尔神经科学研究所空间、用于生理噪声去除的CompCor、基于独立成分分析的自动运动伪影去除策略和FreeSurfer表面重建(详见补充材料)。

连接组梯度构建: 

      功能连接组梯度的构建遵循Hong等人的详细程序(见补充材料)。

补充材料节选:

预处理     

     本文所包含的结果来自使用fMRIprep版本1.2.6-1进行的预处理,fMRIprep是基于Nipype工具的。每个T1w(T1加权)体积通过N4BiasFieldCorrection v2.1.0校正了强度不均匀性(INU),并使用antsBrainExtraction.sh v2.1.0(使用OASIS模板)进行了去颅骨处理。脑表面使用FreeSurfer v6.0.1的recon-all进行重建,先前估算的脑掩模经过自定义方法的精细调整,以调和由ANTs和FreeSurfer分别得到的大脑皮层灰质的分割(Mindboggle)。通过ANTs v2.1.0的antsRegistration工具,使用非线性配准方法对ICBM 152非线性不对称模板版本2009c进行了空间标准化,使用了脑提取版本的T1w体积和模板。脑组织的脑脊液(CSF)、白质(WM)和灰质(GM)分割是在脑提取的T1w上使用fast(FSL v5.0.9)完成的。
     功能数据使用AFNI v16.2.07的3dTshift进行切片时间校正,使用mcflirt(FSL v5.0.9)进行运动校正。然后,使用基于边界的配准将数据与对应的T1w进行共配准,使用九个自由度,采用bbregister(FreeSurfer v6.0.1)。运动校正变换、BOLD到T1w的变换和T1w到模板(MNI)形变被串联并在单个步骤中应用,使用antsApplyTransforms(ANTs v2.1.0),并使用Lanczos插值。通过应用CompCor提取生理噪声回归量。分别为两种CompCor变体:时间(tCompCor)和解剖(aCompCor)估算了主成分。通过腐蚀脑掩模获取了排除皮层源信号的掩模,确保其仅包含亚皮层结构。然后,计算了六个tCompCor成分,只包括该亚皮层掩模内最具变异性的前5%的体素。对于aCompCor,在亚皮层掩模与计算得出的T1w空间中的CSF和WM掩模的并集交集内计算了六个成分,之后将这些成分投影到每个功能运行的本地空间。使用Nipype实现的方法计算了每个功能运行的帧间位移。使用基于ICA的运动伪影自动去除(AROMA)生成了激进的噪声回归量,并创建了一个经过非激进去噪的数据变体。
    FMRIPREP的许多内部操作使用了Nilearn,主要是在BOLD处理工作流程中。有关管道的更多细节,请参见:https://fmriprep.readthedocs.io/en/stable/workflows.html。

连接组梯度构建
     根据Hong及其同事,我们将灰质体素投影到大脑表面,每个半球有10242个顶点,并对时间序列数据进行了下采样。然后,使用每个受试者的fMRI时间序列矩阵,我们基于皮尔逊相关性计算了功能连接组。正如Margulies等人(2016)和其他研究中所述,我们对该矩阵进行了z变换并进行了阈值处理,保留了每行前10%的加权连接,并计算了一个余弦相似性矩阵,该矩阵捕捉了顶点之间连接模式的相似性。我们应用了扩散图嵌入,这是一种非线性降维技术,用于识别解释连接组方差的主要梯度成分,按降序排列。在本研究中,我们遵循了先前的建议,设置α = 0.5,这是一个保留数据点之间全局关系的选择,适用于嵌入空间。我们进行了Procrustes旋转(https://github.com/satra/mapalign),将每个个体的成分与基于Human Connectome Project S1200样本的组级嵌入对齐。

三维梯度指标: 

     为研究皮层组织的多维差异,我们聚焦于解释总方差50%以上的前3个成分。我们将这些梯度组合成一个三维空间,其中每个梯度构成图1C所述空间的一个轴。由此计算离心率,表示任何给定顶点的整合水平;最整合的顶点具有最低的离心率值(背侧注意[DA]、腹侧注意[VA]),而高度专门化(DMN)或单模态顶点相对于大脑其他部分表现出低整合度,因此也具有低离心率值。此外,为与传统连接方法进行比较,根据最近研究建议,我们得出另外两个指标:网络间分散度和网络内分散度。这些指标的更高分散度表示网络间或网络内的连接性更低。

图片

图1. 梯度和离心率图

     (A)第一梯度(左)表示大脑的认知层级,从单模态皮层到默认模式网络(DMN)。第二梯度(中)将视觉皮层(Vis)与其他网络区分,而第三梯度(右)分离边缘网络(Lim/Limb)。

     (B)面板(C)中使用的皮层分区可视化。颜色编码对应面板(C)。

     (C)3梯度空间内分散度指标的可视化(右)。顶点的离心率值对应于距三维空间重心(用黑点表示)的欧几里德距离。对于每个个体的三维图,我们计算了离心率图,由每个顶点到个体三维空间重心的欧几里德距离定义。这些图反映了每个参与者每个顶点的连接组内整合度(低离心率)和分离度(高离心率)。然后我们量化了表示大规模网络分离度的分散度指标。网络内分散度计算为网络顶点到网络重心的平方欧几里德距离之和。网络间分散度量化为网络重心之间的欧几里德距离。分散度指标的视觉解释(左)。矩阵第一行显示每个网络的平均顶点离心率,称为平均嵌入。其余分散度指标显示网络内分散度(对角线绿色)和网络间分散度(其余黑色方块)。使用支持向量分类器算法对每个参与者和每个状态计算一组分散度指标来解码冥想专业水平。

    DA:背侧注意;FP:额顶;SM:躯体运动;VA:腹侧注意。

统计分析: 

     为根据我们的假设识别最能表征专业水平的状态,我们用分散度指标矩阵训练分类器,使用scikit-learn预测专业水平,采用修正的Huber损失函数和5次重复5000次的5折交叉验证。为避免样本不平衡的偏差,我们使用曲线下面积(AUC)而非准确率。一旦识别出这种状态,我们进行探索性事后检验,使用10,000次重复的学生氏bootstrap t检验,以表征专家和新手之间分散度指标的差异。然后,为在更精细尺度上表征这些差异,我们使用岭分类器在表面上比较专家和对照组的离心率值,对Schaefer图谱的400个区域每个重复300次的3折交叉验证方案。使用与探照灯(searchlight )分类信息区域混合模型相同的方法识别显著区域。随后的p值使用错误发现率校正。使用SurfStat计算的基于表面的线性模型,并用随机场理论校正系统误差(系统误差校正p < .05),见补充材料(图S1)。最后,为解开共线性人口统计因素,我们使用双向回归分析,发现DDS(德雷克塞尔解离量表)分数对分散度测量有显著贡献(详见补充材料)。

结果

解码分析: 

     我们假设fMRI连接组测量不仅在冥想状态,而且在非冥想静息状态下也会受到专业水平特质效应的调节。为验证这一假设,我们采用机器学习方法。我们训练支持向量分类器(SVC)使用图1C所描述的分散度指标在给定状态下的部分参与者中区分专家和新手,然后测试其解码同一状态和推广到其他状态的能力。我们认为如果专业水平效应是每种状态中都存在的持久动态特征,则SVC也应该能推广到其他状态。特别是,专业水平效应噪声最小的状态在测试其他状态时最容易推广(图2A)。

     我们仅能解码OP(开放存在)状态的专业水平(AUC=0.646;p=.027),但无法将其分类推广到其他状态。接下来,为更好地测量专业水平效应,我们将所有3种状态平均,再次用平均状态的分散度指标训练分类器。如预期,模型在平均状态上训练并随后在剩余测试集上测试时表现出显著的专业水平解码能力(AUC=0.661;p=.021)。有趣的是,与在OP上训练不同,该模型在测试不同状态时也能推广其分类能力,特别是RS(静息态)(AUC=0.631;p=.046)和OP(AUC=0.672;p=.02)。符合我们的假设,这表明专业水平对大规模网络的影响(通过梯度分散度测量)在多个不同认知状态中都很明显,且通过它们的平均值更准确地表示。接下来,我们聚焦描述这种平均状态下新手和专家之间的具体差异。

图片

图2. 冥想专业水平对离心率图和分散度指标的影响

     (A)在分散度指标上训练随机梯度下降分类器以解码专业水平。训练在3种状态的子样本或3种状态的平均值上进行。使用曲线下面积(AUC)在相同状态或不同状态的剩余样本上测试分类器。支持向量分类器能使用平均状态和OP(开放存在)状态的分散度指标解码专业水平,但在LKC冥想和静息状态中不能。在平均状态上训练的解码器能从RS(静息态)和OP数据预测专业水平。星号表示显著效应(p<.05)。

     (B)专家和新手之间平均状态分散度指标的比较。使用bootstrap t检验显著性,每个框中绘制95%置信区间。蓝色(红色)表示专家的平均离心率值低于(高于)新手。亮色框表示显著检验(p<.05),中等色框表示趋势(.1>p>.05),浅色框表示非显著检验(p>.1)。这些是探索性检验,未进行多重比较校正。结果表明专家的多个指标低于新手。较高的网络间分散度反映两个网络间连接性较弱,较高的网络内分散度反映给定网络顶点间连接性较低。红色下划线表示对专业水平解码有显著贡献的分散度指标(A)。

     (C) 专家和新手平均状态离心率值的直方图。专家的平均离心率仅有趋势性低于新手(tboot=0.44;p=.09)。

     (D) 离心率图描述一个连续坐标系统,较低值表示顶点更接近三维空间重心。对两组而言,感觉区域(包括视觉和躯体运动皮层)和默认模式网络是整合度最低的区域。虽然专家和新手的平均图整体相似,但专家的离心率值在视觉上倾向于低于新手。

     (E) RS(静息态)、OP(开放存在)和LKC(慈爱与慈悲)离心率图平均后新手和专家之间的全表面统计比较。使用每个区域内的体素解码专业水平以获得每个区域的AUC值。这种分析比大规模网络更精细地表征专业水平。显著区域主要属于躯体运动、背侧注意、腹侧注意和边缘网络。

    (F) 小提琴图显示(E)中显著区域的平均离心率,专家低于新手(t68=-2.54;p=.014)。

    avg emb:平均嵌入;FDR:错误发现率;FP:额顶。

平均状态分散度分析:

     为进一步表征最能捕捉冥想专业水平特征的平均状态,我们使用三维空间探索性分析(图2A)和基于表面的分析(图2B)检查了平均状态的分散度指标。探索性分析后,我们发现专家组在以下方面显著降低:背侧注意网络的平均离心率(tboot=0.54;p=.046)、边缘网络(tboot=0.61;p=.017),躯体运动网络趋于显著(tboot=0.51;p=.058),以及背侧注意(tboot=0.57;p=.029)和腹侧注意网络内(tboot=0.6;p=.02)。此外,我们观察到以下网络间分散度降低:

  • 边缘网络与躯体运动网络(tboot=0.52;p=.038)

  • 边缘网络与腹侧注意网络(tboot=0.48;p=.039)

  • 边缘网络与额顶网络(tboot=0.56;p=.021)

  • 腹侧注意网络与额顶网络(tboot=0.51;p=.037)

  • 背侧注意网络与躯体运动皮层(tboot=0.62;p=.012)

     在基于表面的分析中,我们使用Schaefer 400图谱的每个区域上的平均状态离心率进行多变量分析来解码专业水平(图2E)。显著区域主要属于右半球的躯体运动和背侧注意网络。为量化专家和新手之间的离心率差异,我们对所有显著区域内的离心率取平均并比较两组。专家的平均离心率低于新手(t68=-2.54;p=.014)。

     为研究这些组间差异的行为相关性,我们研究了各种特征对解码分散度指标的个体贡献,包括性别、年龄、组别、终生冥想练习时间和特质心理测量(DDS、贝克抑郁量表、五因素正念问卷)。我们采用双向回归模型来控制特征间的协方差,同时优化分散度指标的线性组合以检测编码信息(图3A)。该模型输出每个特征的一组beta系数。在此,仅DDS(德雷克塞尔解离量表)(反映个人对思维和情绪进行认知解离的能力的量表)对冥想专业水平解码有显著贡献(β=0.31;p=.043)。

     我们随后将相同的双向回归模型单独应用于每个分散度指标,即使用所有先前特征来预测分散度指标。由于DDS是唯一表现出显著关系的量表,我们仅呈现其探索性分析(图3B)。我们的目标是识别由特征集预测的哪些离心率指标表现出DDS的显著贡献。结果表明DDS主要可以预测图2B中显著的相同指标。更高的DDS特质分数与这些指标中较低的分散度相关。具体来说:

  • 更高的DDS(德雷克塞尔解离量表)分数与以下网络的较低平均离心率相关:

    • 躯体运动(β=0.13;p=.023)

    • 腹侧注意(β=0.09;p=.046)

    • 边缘(β=0.11;p=.034)

  • 更高的DDS分数与以下网络间较低分散度相关:

    • 躯体运动网络与背侧注意(β=0.21;p=.006)、腹侧注意(β=0.1;p=.038)、边缘网络(β=0.15;p=.016)和DMN(β=0.11;p=.029)之间

    • 边缘网络与腹侧注意网络(β=0.11;p=.036)之间

    • 额顶网络与DMN(β=0.15;p=.015)之间

     然而,与图2B不同,更高的DDS(德雷克塞尔解离量表)分数与网络内分散度变化无关。总之,我们的分析表明,在思维和情绪间创造心理距离的能力与特定网络间和网络内分散度降低相关,这在很大程度上与专家相关的特质特征重叠,表明特质测量与冥想期间神经活动之间存在潜在联系。这些发现阐明了冥想中专业水平效应的神经机制,并强调了在未来研究中考虑状态平均方法的重要性。

图片

图3. 特质因素分析

     (A)使用所示标签作为特征和平均状态的分散度指标作为信号,计算双向回归方法。编码器在解码器之上确定特征的重要性,尽管它们有共享协方差。德雷克塞尔解离量表(DDS)是唯一显著特征(β=0.31;p=.043)。

     (B)在探索性分析中,使用每个指标的双向回归预测DDS分数。颜色编码与图2B相似,区别在于蓝色对应DDS与相应分散度指标的负相关,红色对应正相关。例如,它表明躯体运动(SM)网络与其他网络的整合度越高,DDS分数越高。

      avg emb:平均嵌入; BDI:贝克抑郁量表; DA:背侧注意; DMN:默认模式网络; FFMQ:五因素正念问卷; FP:额顶; Lim:边缘; VA:腹侧注意; Vis:视觉。

讨论 

     在本研究中,我们探索了冥想专业水平的神经相关性,通过测量大脑内在功能连接网络组织的改变。首先,我们仅能在开放存在(OP)状态上训练和测试时解码组别,而在静息态(RS)或慈爱与慈悲(LKC)状态下不能,这表明该状态在组间功能上差异最大;然而,这种模式并未作为特质推广,意味着支持向量分类器权重可能捕捉到了特质与状态的交互效应。接着,我们对3种状态的平均值重复相同程序,因为特质效应表现为低变异性功能连接。如果OP相关的组间差异仅反映状态效应,则平均过程中加入噪声应降低可预测性。相反,如果平均状态通过重复特质样特征减少噪声,则其推广到其他状态的能力应增加。我们发现了后者的一些证据(图2A),表明平均离心率是我们样本中特质样效应的最佳表征。

     随后分析进一步明确了冥想专业水平在离心率图上的特征,该图反映了功能整合(低离心率)和分离(高离心率)。专家在背侧注意和边缘网络中表现出降低的平均离心率,在躯体运动皮层中有趋势,这表明这些网络在认知层级中更加整合,允许与其他网络增强信息交换。与这些发现一致,我们在Schaefer图谱区域上的多变量分析揭示了专家组在右侧海马旁回、前运动回和辅助运动区的离心率较低的簇(图2B)。

     专家在背侧注意和腹侧注意网络中也表现出比新手更低的网络内分散度,这与先前关于冥想特质的报告一致,表明这些网络内的信息传播增强,因为它们的顶点表现出更强的连接性。仅在专家中,边缘网络与躯体运动网络、腹侧注意网络和额顶网络的连接增加;躯体运动皮层与背侧注意网络的连接增强,而腹侧注意网络与额顶网络的连接增强。专家的离心率降低与Valk等人的研究结果一致,其中视角训练导致类似的离心率降低。然而,这与同一研究中注意力训练后离心率增加的发现形成对比,表明不同的冥想和认知训练可能针对并调节不同的神经机制。

     有趣的是,使用扩散图嵌入研究致幻剂急性效应时发现了类似但更显著的全局整合增加模式。与我们的假设一致,这种皮层层级的压缩可能与类似OP冥想的非二元冥想期间自我相关/论述过程的减弱有关。同样,先前研究使用不同方法(如图论分析和扩散加权成像)观察到长期冥想修行者大脑中整合度增加。许多研究同样强调了这些注意力和情感脑网络在冥想实践中的作用。

     在冥想实践中这些网络与躯体运动网络的功能耦合较少报道,尽管这与该实践的具身性质一致。这一发现指向冥想实践中躯体运动皮层的重要功能调节,而这在先前的独立成分分析研究中往往未被用作种子或感兴趣的网络。

     我们发现多个捕捉冥想专业水平特征的指标与创造思维和情绪间心理距离的能力(通过DDS测量)相关。这些相关性的评估考虑了人口统计表(表1)中所有指标的协变,包括专业水平。特别是,与特质特征一致,更高的DDS(德雷克塞尔解离量表)分数与躯体运动皮层和边缘网络中降低的平均离心率相关。此外,DDS与背侧注意网络和躯体运动皮层之间的分散度,以及边缘网络与躯体运动和腹侧注意网络之间的分散度呈负相关。DDS分数越高与边缘、躯体运动和腹侧注意网络更加整合的这些相关性,表明这种神经模式对理解专家的情绪调节能力具有功能相关性。特别是,我们在相同参与者样本中发现,这些专家比新手更能减少并解耦痛苦刺激的不愉快感与其强度,且DDS是解释专家中发现的更强感觉-情感痛苦解耦的核心因素。

    我们的研究有几个局限性:

  • 横断面性质限制了建立因果关系的能力,且存在自我选择偏差

  • 某些组间差异可能反映冥想训练前已存在的个体间差异

  • 虽然通过年龄、性别和教育匹配控制了潜在混淆变量,但可能仍有未考虑的因素

  • 研究主要是探索性的,使用扩散嵌入研究长期冥想实践对大脑的影响,因此发现需要未来研究复制

    总之,我们识别了与冥想专业水平相关的大规模网络,这些网络不限于特定冥想状态,并为通过DDS测量的认知解离的神经机制提供了新见解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值