5-7 最长对称子串 (25分) 对给定的字符串,本题要求你输出最长对称子串的长度。例如,给定Is PAT&TAP symmetric?,最长对称子串为s PAT&TAP s,于是你应该输出11。

//for循环

#include<stdio.h>

	#include<math.h>
	#include<string.h>
	#include<stdlib.h>
	void zhongjian(int t);
void bianbian(int t);
char str[1001];
int n,max=0;
int main(){
	int i;
	gets(str);
	n=strlen(str);
	for(i = 0; i < n; i++){
		zhongjian(i);
		bianbian(i);
	}
	printf("%d",max);
	return 0;
}
void zhongjian(int t){
	int i,j=1;
	for(i = 1;t - i >-1&&t + i < n+1; i++){

		if(str[t - i] == str[t + i]){
			j+=2;
		}
		else break;


	}
	if(max < j) max = j;

}
void bianbian(int t){
	int i,j1=0,j2=0;
	for(i = 0;t - i -1 > -1&& t + i < n+1; i++){ //zuo
		if(str[t - i - 1] == str[t + i]){
			j1=j1+2;
		} else break;
	}
	for(i = 0;t - i > -1&& t + i +1 < n+1; i++){ //you
		if(str[t - i] == str[t + i +1]){
			j2=j2+2;
		} else break;
	}
	if(max < j1) max = j1;
	if(max < j2) max = j2;
}

 

AP TS PI,其最长对称子串为"AP TS PA",长度为7。 回答: 好的,我明白了您的问题。对于给定字符串,我们可以使用动态规划来解决这个问题。具体来说,我们定义一个二维的状态数组dp,其dp[i][j]表示字符串从i到j这个子串是否为回文子串。如果dp[i][j]为true,就表示子串i到j是一个回文子串。根据这个定义,我们可以得到状态转移方程: dp[i][j] = (s[i] == s[j]) && dp[i+1][j-1] 其s[i]表示字符串s的第i个字符。这个方程的意思是,判断当前这个子串是否为回文串,就需要看当前这两个字符是否相等,同时还需要知道子串去掉首尾之后是否为回文串。如果这两个条件都满足,那么当前子串就是回文串。需要注意的是,上述方程对于长度为1或2的子串需要单独处理。 最后,我们可以通过遍历数组dp来找到最长的回文子串的长度。具体来说,我们需要枚举所有长度不小于2的子串,然后判断子串是否为回文串,并更新最长回文子串的长度。实现代码如下: ```python def longest_palindrome(s): n = len(s) dp = [[False] * n for _ in range(n)] max_len = 1 for i in range(n): dp[i][i] = True for j in range(1, n): for i in range(j): if s[i] == s[j]: if j - i < 3: dp[i][j] = True else: dp[i][j] = dp[i+1][j-1] if dp[i][j] and j - i + 1 > max_len: max_len = j - i + 1 return max_len ``` 希望这个回答对您有帮助。如果您有任何其他的问题,请随时向我提问。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值