增量学习包括一些常见的评估指标: 准确率、记忆能力、迁移能力
其中记忆能力和迁移能力时衡量模型可塑性-稳定性的指标,但这些指标具体的公式定义却是有争议的。虽然人们已经提出了各种各样的增量学习方法,但是在基准数据集的选取和评估算法有效性的指标还没有达成广泛共识。
其中一点是增量学习通常需要引入额外的超参数来平衡模型的稳定性和可塑性,这些超参数通常在验证集被优化,但本质上违反了增量学习不能获取未来数据的因果律,从而能导致人们作出过于乐观的结论,在真实的生产环境中常常无法重现实验结果。
目前人们研究的基于深度学习的增量学习大多限制在有监督分类、任务式增量和多头网络结构的框架下,这种特定领域的训练方案通常不能应用于高度动态化和非结构化的真实环境中。
目前增量学习方法通常隐式地要求任务性质差异不能太大,当任务的性质和难度差异太大时,大部分增量学习方法的性能都会严重下降,甚至低于简单的基线模型。另外,有不少研究表明目前还没有任何一种增量学习方法在任务条件下都能表现良好,大部分增量学习方法对模型结构、数据性质、超参数设定都比较敏感,因此探索在所有任务设定中表现稳健的增量学习方法具有意义。
增量学习可用于样本数据量少或者数据记录十分庞大情况。在光伏发电预测应用场景中,当发现模型预测性能下降时,往往需要更新原始训练数据集重新建模,这种做法在工作量、时间和资源上都存在浪费。相较而言,增量学习策略可以仅针对新增数据进行持续更新,避免重复训练整个数据集,降低计算复杂度,提高模型泛化能力,达到平衡模型性能和效率的效果。
深度神经网络已经在许多机器学习任务中取得巨大成功,这些任务都是基于独立同分布的(independent identically distributed IID)数据。这一设定违反了实际应用中所面临的非平稳数据分布,如自动驾驶、智能对话系统和其他实时应用。面对非IID数据。当DNN对新任务进行再训练时,神经网络在过去任务中的性能表现会迅速下降,被称为灾难性遗忘。增量学习incremental learning 出现使得DNN能够在学习新知识的同时保留先前获得的知识,使得模型具有可塑性-稳定性。
传统增量学习大多是以离线方式训练模型,即通过重复训练多批次当前任务来增加模型拟合效果。然而,由于隐私问题和内存限制,离线设定不再适用。本文考虑了一项具有挑战性的单次数据流任务,即在线类增量学习online class incremental leanring,该任务限制每个训练任务的样本流智能看到一次,并且是非IID的。