如何理解拉格朗日乘子法和KKT条件?

之前简单介绍了拉格朗日乘子法的基本思路:如何理解拉格朗日乘子法?

本文会继续介绍拉格朗日乘子法的细节,以及对其进行适当的推广(也就是所谓的KKT条件)。

1 无约束下的极值

1.1 直观

根据梯度的意义(参看如何理解梯度)可知,在函数f(x) 的极值点梯度为0:

1.2 代数

要求(\text{minimize} 的意思是求极小值):

\text{minimize}\ f(x)

只需解如下方程:

\nabla f=0

2 单等式约束下的极值

关于这一节,更详细的请参看:如何理解拉格朗日乘子法?

2.1 直观

要求方程x^2y-3=0 与原点的最小距离:

问题被转化为了同心圆与x^2y-3=0 什么时候相切:

相切就是在极小值点有相同的切线:

只要能通过数学把相切这个条件表示出来,就可以得到解。

我们把同心圆可以看作凸函数f(x,y)=x^2+y^2 的等高线:

把方程x^2y-3=0 看作凸函数g(x,y)=x^2y 的等高线中的一条:

这样f 的等高线,同心圆,的法线就是\nabla f :

g 的等高线的其中一条,方程x^2y-3=0 ,的法线就是\nabla g

两者相切就意味着,在切点,两者法线平行:

也就是:

\nabla f+\lambda\nabla g=0

2.2 代数

上面的问题形式化后,用代数表示为(\text{subject to} 的意思是服从于,约束于的意思):

\begin{aligned}    & \text{minimize} & & f(x,y) \\    & \text{subject to} & & g(x,y) = 3\end{aligned}

只需解如下方程组:

\begin{cases}    \nabla f+\lambda\nabla g=0\\    \\    g(x,y)=3\end{cases}

3 多等式约束下的极值

比如下图:

要求f 被g_1=0,g_2=0 约束后的极值,可以证明在极值点\nabla f 必然在\nabla g_1,\nabla g_2 张成的空间中。

那么上面的问题形式化后就是:

\begin{aligned}    & \text{minimize} & & f \\    & \text{subject to} & & g1=0,g_2=0\end{aligned}

只需解如下方程组:

\begin{cases}    \nabla f+\lambda_1\nabla g_1+\lambda_2\nabla g_2=0\\    \\    g1=0,g_2=0\end{cases}

更一般的,如果有n 个约束等式:

\begin{aligned}    & \text{minimize} & & f \\    & \text{subject to} & & g_i=0,i=1,2,\cdots,n\end{aligned}

只需解如下方程组:

\begin{cases}    \displaystyle\nabla f+\sum_{i}^{n}\lambda_i\nabla g_i=0    \\    g_i=0,i=1,2,\cdots,n\end{cases}

4 不等式约束下的极值

比如,我们要求刚才同心圆的最小值:

那肯定就是原点啦,半径为0肯定就是最小值了。

从代数上看就是要求:

\text{minimize}\ f(x,y)=x^2+y^2

解:

\nabla f=0\implies (x,y)=(0,0)

4.1 情况一

我们给它添加一个不等式约束,也就是求:

\begin{aligned}    & \text{minimize} & & f(x,y) \\    & \text{subject to} & & h(x,y)=x+y \le 1\end{aligned}

可以看到,这个不等式约束实际上包含了原点:

所以这个约束等于没有,依然求解:

\nabla f=0\implies (x,y)=(0,0)

4.2 情况二

换一个不等式约束:

\begin{aligned}    & \text{minimize} & & f(x,y) \\    & \text{subject to} & & h(x,y)=x+y \le -2\end{aligned}

不等式约束看起来是这样的:

因为同心圆是凸函数的等高线,所以等高线的值是这么排列的:

所以,在不等式约束下,最小值是在边缘相切的地方取得:

和用等式h(x,y)=x+y=-2 进行约束效果是一样的:

因此可以通过解方程组求出答案:

\begin{cases}    \nabla f+\mu\nabla h=0    \\    h(x,y)=x+y=-2\end{cases}

4.3 新增的条件

仔细研究,不等式实际上带来了新的条件。

同心圆是凸函数的等高线,等高线的值如下排列,所以在相切处,法线也就是\nabla f 的方向如下(法线也就是梯度,指向增长最快的方向,也就是等高线的值变大的方向):

而凸函数h(x,y) 的法线\nabla h 也一样指向h(x,y) 增长的方向,这个方向正好和\nabla f 相反:

因此:

\nabla f+\mu\nabla h=0,\mu \ge 0

其中,\mu \ge 0 就表明\nabla f,\nabla h 方向相反。

因此刚才的方程组可以再增加一个条件:

\begin{cases}    \nabla f+\mu\nabla h=0    \\    h(x,y)=x+y=-2    \\    \mu \ge 0\end{cases}

5 KKT条件

因此,综合上面的所有情况,可以把求如下的极值:

\begin{aligned}    & \text{minimize} & & f \\    & \text{subject to} & & g_i=0,i=1,2,\cdots,n\\    &                   & & h_i\le 0,i=1,2,\cdots,n\\\end{aligned}

通过解下面这个方程组来得到答案:

\begin{cases}    \displaystyle\nabla f+\sum_{i}^{n}\lambda_i\nabla g_i+\sum_{j}^{m}\mu_j\nabla h_j=0    \\    g_i=0,i=1,2,\cdots,n\\    \\    h_j\le 0,j=1,2,\cdots,m\\    \\    \mu_j \ge 0\\    \\    \mu_j h_j = 0\\\end{cases}

这个方程组也就是所谓的KKT条件。

进一步解释下方程组的各个项:

\begin{array}{c|c}    \hline    \\    \quad \displaystyle\nabla f+\sum_{i}^{n}\lambda_i\nabla g_i+\sum_{j}^{m}\mu_j\nabla h_j=0\quad&\quad 等式与不等式约束的梯度的线性组合\quad \\    \quad g_i=0,i=1,2,\cdots,n\quad&\quad等式约束\quad\\    \quad h_j\le 0,j=1,2,\cdots,m\quad&\quad不等式约束\quad\\    \quad \mu_j \ge 0\quad&\quad不等式约束下,法线方向相反\quad\\    \quad \mu_j h_j=0\quad&\quad不等式约束下\begin{cases}情况一:\mu=0,h_j\le 0\\\\情况二:\mu_j \ge 0,h_j=0\end{cases}\quad\\    \\    \hline\end{array}

文章最新版本在(有可能会有后续更新):如何理解拉格朗日乘子法与KKT条件?

  • 15
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值