​Python 中的经典时间序列预测模型总结【10~11】

10 简单指数平滑 (SES)

简单指数平滑 (SES) 方法将下一个时间步建模为先前时间步观测值的指数加权线性函数。

该方法适用于没有趋势和季节性成分的单变量时间序列。

定义

指数平滑的最简单形式由以下公式给出:

式中  是平滑因子,并且 。换句话说,平滑的统计量  是当前观测值的简单加权平均值  和之前的平滑统计 。简单的指数平滑很容易应用,只要有两个观测值,它就会生成平滑的统计量。

平滑因子  具有较大的值,实际上降低平滑水平,并在极限情况下  输出系列只是当前的观察结果。

  •  的值接近 1 的平滑效果较小,并且对数据中最近的变化给予更大的权重。

  • 而  值 接近于零,具有更大的平滑效果并且对最近的变化的响应更小。

指数平滑是一种利用指数窗函数平滑时间序列数据的经验法则。而在简单的移动平均中,过去的观测值的权重是相等的。指数函数被用来分配随着时间呈指数递减的权重。

指数平滑是信号处理中常用的平滑数据的窗口函数之一,作为低通滤波器去除高频噪声。

更多内容可参见维基百科上的指数平滑[7]

Python代码

# SES example
from statsmodels.tsa.holtwinters import SimpleExpSmoothing
from random import random
# contrived dataset
data = [random() for x in range(1, 100)]
# fit model
model = SimpleExpSmoothing(data)
model_fit = model.fit()
# make prediction
yhat = model_fit.predict(len(data), len(data))
print(yhat)

11 霍尔特·温特的指数平滑(HWES)

Holt Winter 的指数平滑(HWES)也称为三次指数平滑方法,将下一个时间步长建模为先前时间步长的观测值的指数加权线性函数,并考虑趋势和季节性。

该方法适用于具有趋势和/或季节性分量的单变量时间序列。

Python代码

# HWES example
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from random import random
# contrived dataset
data = [x + random() for x in range(1, 100)]
# fit model
model = ExponentialSmoothing(data)
model_fit = model.fit()
# make prediction
yhat = model_fit.predict(len(data), len(data))

时间序列模型在Python中有多种实现方法。以下是一些常用的时间序列预测方法: 1. 简单移动平均模型(Simple Moving Average, SMA):该方法基于时间序列中一段时间内的平均值,以预测未来值。 2. 加权移动平均模型(Weighted Moving Average, WMA):该方法与简单移动平均模型类似,不同之处在于对不同时间点的数据赋予不同的权重。 3. 指数平滑模型(Exponential Smoothing):该方法通过对历史观测值的加权平均来计算预测值,其中较近期的观测值具有更高的权重。 4. 季节性自回归整合移动平均模型(Seasonal Autoregressive Integrated Moving Average, SARIMA):该方法适用于具有趋势和季节性分量的时间序列数据。它包括自回归(AR)和移动平均(MA)模型,以及对季节性分量的适应。 5. 长短期记忆网络(Long Short-Term Memory, LSTM):这是一种基于神经网络的时间序列预测方法,可以处理长期依赖关系和非线性模式。 以上只是一些常见的时间序列预测方法,你可以根据具体情况选择适合的方法来建模和预测时间序列数据。你可以在中找到更多的时间序列预测方法的介绍和Python代码示例。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [PythonPython中的经典时间序列预测模型总结](https://blog.csdn.net/fengdu78/article/details/121005843)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值