本文概述了企业数据仓库体系的建设目标及核心内容。通过学习,您将掌握数据仓库的发展历程、特点及其分层架构设计,并了解数据仓库产品解决方案。数据仓库由比尔·恩门于1990年提出,旨在通过特定存储架构整合OLTP数据,支持OLAP、数据挖掘及BI等应用。数据仓库体系分为多个层次,包括贴源数据层(ODS)、标准数据层(STD)、主题数据层(DWS)及专题数据层(DM)。ODS层保存操作数据,作为业务系统与数据仓库间的缓冲;STD层按应用需求处理数据,实现标准化;DWS层满足特定查询与数据挖掘需求,减少重复开发;DM层则提供清晰的数据结构和数据血缘追踪。数据仓库的优势在于能够处理PB/ZB级大数据量,支持分布式弹性计算,并具备全域数据维度。相比传统操作型数据库,数据仓库通过OLAP与OLTP的剥离,提高了业务系统性能,并允许对分析应用进行特殊配置。本文还介绍了数据仓库的建设实现,包括数据来源、数据处理、服务领域及数据加工过程,强调了维度建模和星型架构在数据整合与提炼中的重要性。通过数据仓库体系的建设,企业能够更有效地利用数据资源,支持决策制定和商业智能应用。
企业数仓建设体系(50页 PPT)
于 2024-10-01 17:23:04 首次发布