机器学习(三):支持向量机

支持向量机是一种以最大化间隔为目标的判别模型,通过找到最优超平面来最小化泛化误差。其核心包括几何间隔、函数间隔和带约束的优化问题。当数据不可分时,引入损失函数和松弛变量,形成新的优化目标。SVM的拉格朗日对偶问题和Hinge Loss是其关键点,而支持向量是离超平面最近的样本,具有决定性作用。核函数的主要目的是将数据映射到高维空间以实现线性可分。
摘要由CSDN通过智能技术生成

支持向量机是一种判别模型,它构建一个超平面使得距离这个超平面最近的点的距离最大。支持向量机的任务是在较低的模型泛化误差下寻找一个合适的超平面。

如果超平面的函数是如下表达式:

那么超平面与数据点(label=1)之间的几何关系为:

定义:几何间隔和函数间隔

因此,转换为带约束的优化问题:

我们无法保证数据是线性可分的,因此需要添加损失和松弛变量:

新的优化问题变成:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值