支持向量机基本型

支持向量机基本型



线性分类器回顾

在这里插入图片描述

  • 找一个超平面将正负类分开,那个最好呢?直觉上,正中间最好,即离正负类差不多的距离。正中间的是对轻微的扰动对最鲁棒的(最不敏感的),泛化能力最强。
  • 那么我们如何将正中间的线找出来呢?

间隔与支持向量

在这里插入图片描述

  • 这几个标红的样本,是离超平面最近的样本,它们直接定义了中间这条线。我们把直接定义了这条线的红色点,称为支持向量。

在这里插入图片描述

  • r表示点到直线的距离,我们现在假设支持向量(离该线最近的点)到直线的距离为1。
  • γ=2/||ω||,表示超平面相对于整个数据集的间隔。γ也可以称为该点到超平面的间隔。我们可以这样理解,当γ(间隔)越大,用超平面划分,越准确。

支持向量机基本型

在这里插入图片描述

  • 最大间隔,寻找参数ω和b,使间隔γ最大 。

  • 以上我们已经使样本离超平面的距离>=1。(xi,yi)表示样本点,yi的取值在本例中只能是+或-。所以,yi*(ωT*xi+b)>=1。

  • 我们习惯于做最小化,所以进行变换。接下来我们要对这个式子做优化。更高效的方法是拉格朗日乘子法。

对偶问题

在这里插入图片描述

  • 求解拉格朗日函数得到最小值。(这个问题是原来问题的对偶问题)对偶问题的最小值是原来目标函数的下界。希望原来函数尽可能好,要得到最好的下界,由此我们要对下界求极大。
  • 将第二步求得的式子,代入L(ω,b,a)中并求最大,得到第三步中划红线的式子。
    提示:
    在这里插入图片描述
  • 解第三步的式子,得出α,α是指对每一个样本都有一个系数。例如:有m个样本就有m个约束

解的特性

在这里插入图片描述

  • 最终模型:

    • 如果我们还是考虑ωT+b,为线性方程的形式的话,得到最终模型。
      在这里插入图片描述
      提示:ω转置,只需要转置向量xi,无需转置标量αi,yi。
      在这里插入图片描述
  • KKT条件:

    • 如果αi=0,意味着以αi为系数的这个点,在最后预测的函数里面没有出现。
    • 如果yi*f(xi)=1,(yi的取值在本例中只能是+或-)则点恰好在间隔上。否则超过间隔则大于1。
    • 存在于方程中用得到的点,一定是出现在(离超平面最近的点,所在的平行于超平面的线上。即ωTx+b=1或ωTx+b=-1)上的点。假设我们有1000个点,大量的点都没有出现在间隔上。只有少量出现在间隔上的点,才出现在方程中。所以这就是,支持向量机解的稀疏性。
  • 解的稀疏性:训练完成后,最终模型仅与支持向量有关。

求解方法SMO

  • 以上已经分析了解的特性,接下来介绍一种支持向量机最经典的解法—SMO

在这里插入图片描述

  • 每次只考虑两个样本,αi,αj,其他m-2个都是常数。

在这里插入图片描述

  • 第二步:

    • 根据约束条件,有:αi*yi+αj*yj=c。可以用αi表示αj,代入对偶问题,那么该式仅有αi一个变量,则原式有闭式解
      • αi的数量与样本的总数有关,若想同时优化,问题会很复杂。
      • 所以使用SMO,取α的两个,把第一个解出,得到第二个解…这样就可以迭代地解下去。
  • 第一步(选取):

    • 一对αi,αj如何取,最有效的取法:

      • 每一次更新之后,使得目标函数改变最多。
      • 违反KKT条件最多,拿它来更新,目标函数就会提高的越大。
    • 通过以上方法找出第一个点,第二点则找离第一个点间隔最远的点。

  • 每次找违反条件最大的来更新,最后找不到,就收敛。

  • 因为ys*f(xs)=1,解出b。解出一个αi时,已经能够将b解出,但通常会使用所有的支持向量,求平均。
    在这里插入图片描述


以上就是本文的全部内容,感谢各位的阅读与支持!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,用于二分类和多分类问题。它的基本型可以通过对偶形式来表示。 在支持向量机的对偶形式中,我们需要解决一个优化问题,即最大化一个关于拉格朗日乘子(Lagrange multipliers)的函数。这个函数是原始问题的对偶问题,通过求解对偶问题可以得到原始问题的最优解。 对于支持向量机的对偶形式,我们可以使用以下步骤进行求解: 1. 定义原始问题的拉格朗日函数: L(w, b, a) = 1/2 * ||w||^2 - Σ[a * (yi * (w * xi + b) - 1)] 其中,w是一个权重向量,b是一个偏置项,a是拉格朗日乘子,xi是输入样本,yi是对应的标签。 2. 将拉格朗日函数对w和b求偏导,并令其等于0,得到以下两个等式: ∂L/∂w = w - Σ[a * yi * xi] = 0 ∂L/∂b = Σ[a * yi] = 0 3. 将上述两个等式代入拉格朗日函数,得到对偶问题的目标函数: max Σ[a - 1/2 * Σ[a * aj * yi * yj * xi * xj]] 其中,a是拉格朗日乘子,aj是另一个拉格朗日乘子,xi和xj是输入样本,yi和yj是对应的标签。 4. 对于对偶问题,我们需要满足以下约束条件: Σ[a * yi] = 0 a >= 0 5. 使用优化算法(如SMO算法)求解对偶问题,得到最优的拉格朗日乘子a。 6. 根据最优的拉格朗日乘子a,可以计算出权重向量w和偏置项b: w = Σ[a * yi * xi] b = yi - Σ[a * yi * (w * xi)] 以上就是支持向量机基本型的对偶形式的介绍。通过求解对偶问题,我们可以得到支持向量机的最优解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值