pyTorch模型部署--高并发web服务&c++&移动端ncnn

1 综述

基于pyTorch的python接口训练的模型,一般会针对部署环境进行模型的转换。而深度学习模型的使用环境,一般会分成以python web服务的方式进行部署、以c++调用深度学习模型或针对移动式设备进行部署。

2 以python web服务的形式进行部署

https://blog.csdn.net/cdknight_happy/article/details/100015592中,用docker + supervisor + nginx + gunicorn + flask的方式部署了深度学习的服务,如下面的代码所示:

#服务端代码
import numpy as np
import sys
import os
import torch
from flask import Flask,request,jsonify
import json
import torchvision

app = Flask(__name__)

model = torchvision.models.resnet18(pretrained=True)

model.eval()

def run_inference(in_tensor):
    with torch.no_grad():
        out_tensor = model(in_tensor.permute(2,0,1).unsqueeze(0))

    prob,clas = torch.softmax(out_tensor,dim=1).max(dim=1)

    out = {'label':clas.item()}
    return out

@app.route('/predict',methods = ['POST'])
def predict():
    meta = json.load(request.files['meta'])
    blob = request.files['blob'].read()
    in_tensor = torch.from_numpy(np.frombuffer(blob,dtype = np.int8))
    in_tensor = in_tensor.view(*meta['shape'])
    in_tensor = in_tensor.to(torch.float32) / 255.
    out = run_inference(in_tensor)
    return jsonify(out)

if __name__ == '__main__':
    app.run(host='0.0.0.0',port=8000)
#客户端代码
import requests
import json
import io
import cv2

img = cv2.imread('./1.jpg')

meta = io.StringIO(json.dumps({'shape': list(img.shape)}))
data = io.BytesIO(bytearray(img))
r = requests.post('http://localhost:8000/predict',
                  files={'meta': meta, 'blob' : data})
response = json.loads(r.content)

print("class label is:", response['label'])

上述代码只是一个示例,并未使用wsgi进行生产环境的部署。但其仍然是使用flask进行web响应,代码存在下述四个方面的问题:

  1. 对于单个客户端发送的请求集合,只能顺序处理,只能在一个请求处理完成后才能处理另一个请求,效率低下;
  2. 因为GIL的存在,也无法在服务端开启多个线程异步响应请求;
  3. 数据拷贝过多,上述代码中,服务端接收到数据后,将bytes转换成numpy,然后再转换为torch.tensor,再进行数据的reshape操作。

深度学习模型批处理才可以最大限度的发挥其能力,因此可以使用sanic框架替代flask以提升处理效率。

下面的内容参考自《Deep Learning With PyTorch》第15章。

整体实现思路如下图所示:

在这里插入图片描述
client端发送多个请求,在server端先进行组batch,在组到指定数量的请求时或者第一个收到的请求已经等待了足够长的时间时,将请求集送入深度学习模型进行批处理,将处理结果顺序的返回给client端。代码实现中用到了协程实现异步操作。

#服务端代码
import sys
import asyncio
import itertools
import functools
from sanic import Sanic
from sanic.response import  json, text
from sanic.log import logger
from sanic.exceptions import ServerError

import sanic
import threading
import PIL.Image
import io
import torch
import torchvision
# from cyclegan import get_pretrained_model

app = Sanic(__name__)

device = torch.device('cpu')
# we only run 1 inference run at any time (one could schedule between several runners if desired)
MAX_QUEUE_SIZE = 3  # we accept a backlog of MAX_QUEUE_SIZE before handing out "Too busy" errors
MAX_BATCH_SIZE = 2  # we put at most MAX_BATCH_SIZE things in a single batch
MAX_WAIT = 1        # we wait at most MAX_WAIT seconds before running for more inputs to arrive in batching

class HandlingError(Exception):
    def __init__(self, msg, code=500):
        super().__init__()
        self.handling_code = code
        self.handling_msg = msg

class ModelRunner:
    def __init__(self):#, model_name
        # self.model_name = model_name
        self.queue = []

        self.queue_lock = None

        # self.model = get_pretrained_model(self.model_name,
        #                                   map_location=device)

        self.model = torchvision.models.resnet18(pretrained=True)
        self.model.eval()
        for p in self.model.parameters():
            p.requires_grad_(False)

        self.needs_processing = None

        self.needs_processing_timer = None

    def schedule_processing_if_needed(self):
        if len(self.queue) >= MAX_BATCH_SIZE:
            logger.debug("next batch ready when processing a batch")
            self.needs_processing.set()
        elif self.queue:
            logger.debug("queue nonempty when processing a batch, setting next timer")
            self.needs_processing_timer = app.loop.call_at(self.queue[0]["time"] + MAX_WAIT, self.needs_processing.set)

    async def process_input(self, input):
        our_task = {"done_event": asyncio.Event(loop=app.loop),
                    "input": input,
                    "time": app.loop.time()}
        async with self.queue_lock:
            if len(self.queue) >= MAX_QUEUE_SIZE:
                raise HandlingError("I'm too busy", code=503)
            self.queue.append(our_task)
            logger.debug("enqueued task. new queue size {}".format(len(self.queue)))
            self.schedule_processing_if_needed()

        await our_task["done_event"].wait()
        return our_task["output"]

    def run_model(self, batch):  # runs in other thread
        return self.model(batch.to(device)).to('cpu')

    async def model_runner(self):
        self.queue_lock = asyncio.Lock(loop=app.loop)
        self.needs_processing = asyncio.Event(loop=app.loop)
        # logger.info("started model runner for {}".format(self.model_name))
        while True:
            await self.needs_processing.wait()
            self.needs_processing.clear()
            if self.needs_processing_timer is not None:
                self.needs_processing_timer.cancel()
                self.needs_processing_timer = None
            async with self.queue_lock:
                if self.queue:
                    longest_wait = app.loop.time() - self.queue[0]["time"]
                else:  # oops
                    longest_wait = None
                logger.debug("launching processing. queue size: {}. longest wait: {}".format(len(self.queue), longest_wait))
                to_process = self.queue[:MAX_BATCH_SIZE]
                del self.queue[:len(to_process)]
                self.schedule_processing_if_needed()
            # so here we copy, it would be neater to avoid this
            batch = torch.stack([t["input"] for t in to_process], dim=0)
            # we could delete inputs here...

            result = await app.loop.run_in_executor(
                None, functools.partial(self.run_model, batch)
            )
            for t, r in zip(to_process, result):
                t["output"] = r
                t["done_event"].set()
            del to_process

style_transfer_runner = ModelRunner()#sys.argv[1]

@app.route('/image', methods=['POST'], stream=True)
async def image(request):
    try:
        print (request.headers)
        content_length = int(request.headers.get('content-length', '0'))
        MAX_SIZE = 2**22 # 10MB
        if content_length:
            if content_length > MAX_SIZE:
                raise HandlingError("Too large")
            data = bytearray(content_length)
        else:
            data = bytearray(MAX_SIZE)
        pos = 0
        while True:
            # so this still copies too much stuff.
            data_part = await request.stream.read()
            if data_part is None:
                break
            data[pos: len(data_part) + pos] = data_part
            pos += len(data_part)
            if pos > MAX_SIZE:
                raise HandlingError("Too large")

        # ideally, we would minimize preprocessing...
        im = PIL.Image.open(io.BytesIO(data))
        im = torchvision.transforms.functional.resize(im, (228, 228))
        im = torchvision.transforms.functional.to_tensor(im)
        im = im[:3]  # drop alpha channel if present
        if im.dim() != 3 or im.size(0) < 3 or im.size(0) > 4:
            raise HandlingError("need rgb image")
        out_im = await style_transfer_runner.process_input(im)
        out_im = torchvision.transforms.functional.to_pil_image(out_im)
        imgByteArr = io.BytesIO()
        out_im.save(imgByteArr, format='JPEG')
        return sanic.response.raw(imgByteArr.getvalue(), status=200,
                                  content_type='image/jpeg')
    except HandlingError as e:
        # we don't want these to be logged...
        return sanic.response.text(e.handling_msg, status=e.handling_code)

app.add_task(style_transfer_runner.model_runner())
app.run(host="0.0.0.0", port=8000,debug=True)


#客户端代码
import requests
import json
import io

img_name = './1.jpg'

headers = {'Content-type': 'image/jpg'}
# r = requests.put('http://localhost:8000/image',data=open(img_name, "rb"),headers=headers)
r = requests.post('http://localhost:8000/image',data=open(img_name, "rb"),headers=headers)

response = json.loads(r.content)

print("class label is:", response['label'])

客户端也可以通过下面的指令提交图像:

curl -T data/p1ch2/horse.jpg http://localhost:8000/image --output /tmp/res.jpg

服务启动后会自动调用model_runner进入等待,一旦客户端发送了请求过来,就通过process_input函数进行了任务缓存,在任务达到指定数量后或者第一个任务等待了足够的时间后,就会取任务进行批量数据的推理。

参考:sanic官方地址asynciohttps://www.jianshu.com/p/636833c71c2a

3 c++调用方式进行部署

以c++方式部署模型时,需要首先将模型转换成在c++中能调用的方式。转换方式有torchscript、onnx和tensorRT。

模型转换过程中常见的错误是,某些操作在某些框架中是不支持的,需要自定义一些操作或者网络层。也有可能出现在两个不同框架下某个同名操作的实现是不完全一致的,因此模型转换过程中需要特别细致,具体问题具体分析解决。最好在模型转换前后,对同一个输入进行推理,对比推理结果是否一致以判断模型转换是否成功。

3.1 torchscript

torchscript是由pyTorch提供的用于进行模型高效率部署的环境,包含在torch.jit模块中。torchscript提供了一些工具获取一个pyTorch模型的定义,将其动态图变为静态图,为每一个操作选取效率最高的实现,从而提升模型的推理效率。

参考https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.htmlhttps://pytorch.org/tutorials/advanced/cpp_export.htmlhttps://pytorch.org/docs/stable/jit.htmlhttps://stackoverflow.com/questions/62626052/what-are-the-differences-between-torch-jit-trace-and-torch-jit-script-in-torchsc

3.1.1 模型转换

将pyTorch模组转换为torchscript模型,最关键的是torch.jit.tracetorch.jit.script两个函数。

3.1.1.1 torch.jit.trace

如下面的示例代码所示:

class MyCell(torch.nn.Module):
    def __init__(self):
        super(MyCell, self).__init__()
        self.linear = torch.nn.Linear(4, 4)

    def forward(self, x, h):
        new_h = torch.tanh(self.linear(x) + h)
        return new_h, new_h

my_cell = MyCell()
x, h = torch.rand(3, 4), torch.rand(3, 4)
traced_cell = torch.jit.trace(my_cell, (x, h))
print(traced_cell)
traced_cell(x, h)
print(traced_cell.code)

输出:

MyCell(
  original_name=MyCell
  (linear): Linear(original_name=Linear)
)

def forward(self,
    input: Tensor,
    h: Tensor) -> Tuple[Tensor, Tensor]:
  _0 = torch.add((self.linear).forward(input, ), h, alpha=1)
  _1 = torch.tanh(_0)
  return (_1, _1)

torch.jit.trace接受一个pyTorch模型和一个示例输入,得到一个固化后的模型。之所以要输入一个示例的输入,如下面代码中的(x,h),作用就是给定一个真实的输入,记录下模型在推理过程中到底要进行哪些操作,如为每一个卷积层选取效率最快的实现,舍弃模型中记录的多余的操作,从而将动态图转换为适合于当前输入的静态图,提升推理效率。traced_cell.code中记录了模型具体执行的操作集合。

3.1.1.2 torch.jit.script

torch.jit.scripttorch.jit.trace的作用是一致的,区别是两者适用于不同类型的模型。一句话概况就是

class MyDecisionGate(torch.nn.Module):
    def forward(self, x):
        if x.sum() > 0:
            return x
        else:
            return -x

class MyCell(torch.nn.Module):
    def __init__(self, dg):
        super(MyCell, self).__init__()
        self.dg = dg
        self.linear = torch.nn.Linear(4, 4)

    def forward(self, x, h):
        new_h = torch.tanh(self.dg(self.linear(x)) + h)
        return new_h, new_h

my_cell = MyCell(MyDecisionGate())
traced_cell = torch.jit.trace(my_cell, (x, h))
print(traced_cell.code)

输出:

def forward(self,
    input: Tensor,
    h: Tensor) -> Tuple[Tensor, Tensor]:
  _0 = self.dg
  _1 = (self.linear).forward(input, )
  _2 = (_0).forward(_1, )
  _3 = torch.tanh(torch.add(_1, h, alpha=1))
  return (_3, _3)

输出_3 = torch.tanh(torch.add(_1, h, alpha=1))中可以看出,add操作是在_1h上执行的,而不是在_2h上执行的,也就是说,使用torch.jit.trace时,MyDecisionGate中的forward过程被被忽略了,原因就在于torch.jit.trace只记录在给定输入下模型实际执行的操作。那么MyDecisionGateforward函数中包含了判断语句,这些控制语句是torch.jit.trace无法解析的,因此在转换过程中被忽略了。

正确的做法是使用torch.jit.script函数,模型代码保持不变,转换部分的代码变为:

scripted_gate = torch.jit.script(MyDecisionGate())

my_cell = MyCell(scripted_gate)
traced_cell = torch.jit.script(my_cell)
print(traced_cell.code)

输出:

def forward(self,
    x: Tensor,
    h: Tensor) -> Tuple[Tensor, Tensor]:
  _0 = (self.dg).forward((self.linear).forward(x, ), )
  new_h = torch.tanh(torch.add(_0, h, alpha=1))
  return (new_h, new_h)

可以看到,self.dg的前向函数参与了模型的转换过程。

对于网络前向运算过程中包含for循环的,也可以得到相同的结论。因此,如果模型的前向运算过程中包含了if-else判断或者for循环等控制流,必须使用torch.jit.script。但是如果代码中包含了torch.jit.script不支持的多态,那么就应该使用torch.jit.trace

3.1.2 模型保存与加载

保存模型:

traced_cell.save('1.zip')

加载模型:

traced_cell = torch.jit.load('1.zip')

3.1.3 在c++中使用torchscript的模型(libtorch)

LibTorch为pyTorch的c++ API。从pyTorch官网下载libTorch,解压,使用头文件和库文件。

代码中明确需要使用的头文件有:#include <torch/script.h>

示例c++代码:

#include <torch/script.h> // One-stop header.

#include <iostream>
#include <memory>

int main(int argc, const char* argv[]) {
  if (argc != 2) {
    std::cerr << "usage: example-app <path-to-exported-script-module>\n";
    return -1;
  }


  torch::jit::script::Module module;
  try {
    // Deserialize the ScriptModule from a file using torch::jit::load().
    module = torch::jit::load(argv[1]);
  }
  catch (const c10::Error& e) {
    std::cerr << "error loading the model\n";
    return -1;
  }
	
	// Create a vector of inputs.
  std::vector<torch::jit::IValue> inputs;
  inputs.push_back(torch::ones({1, 3, 224, 224}));

  // Execute the model and turn its output into a tensor.
  at::Tensor output = module.forward(inputs).toTensor();
  std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';
  
  std::cout << "ok\n";
}

3.2 onnx

3.2.1 pyTorch模型转onnx

安装onnxonnxoptimizeronnx-simplifier

pip install onnxoptimizer onnx-simplifier onnx

pyTorch1.0后的版本自带了onnx模型输出,将pyTorch模型转换为onnx模型:

try:
	import onnx
	
	# Input
    img = torch.zeros((opt.batch_size, 3, *opt.img_size))  # image size(1,3,320,192) iDetection
    
    print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
    f = opt.weights.replace('.pt', '.onnx')  # filename
        
    model.fuse()  # only for ONNX
    torch.onnx.export(model, img, f, verbose=False, opset_version=12, 
    input_names=['images'],output_names=['classes', 'boxes'] if y is None else ['output'])

    # Checks
    onnx_model = onnx.load(f)  # load onnx model
    onnx.checker.check_model(onnx_model)  # check onnx model
        
    print(onnx.helper.printable_graph(onnx_model.graph))  # print a human readable model
    print('ONNX export success, saved as %s' % f)

except Exception as e:
    print('ONNX export failure: %s' % e)

torch.onnx.export导出模型,onnx.checker.check_model进行模型检查;

3.2.2 使用onnx-simplifier简化模型

python3 -m onnxsim input_onnx_model output_onnx_model

3.3 tensorrt

这里有很多关于tensorrt的介绍

官方地址:https://docs.nvidia.com/deeplearning/tensorrt/index.html
常见模型转换:https://github.com/wang-xinyu/tensorrtx

4 移动端进行部署

4.1 ncnn

官方地址:https://github.com/Tencent/ncnnhttps://github.com/Tencent/ncnn/wiki/use-ncnn-with-pytorch-or-onnx

ncnn和tensorRT一样,专注于部署环境中的模型推理的优化。

pyTorch模型可以先转onnx(3.2节)再转为ncnn进行部署。

onnx -> ncnn :

onnx2ncnn yolov5s-sim.onnx yolov5s-sim-orig.param yolov5s-sim-orig.bin

ncnn 优化:
可以将模型转换为fp16

ncnnoptimize yolov5s.param yolov5s.bin yolov5s-opt.param yolov5s-opt.bin 65536

ncnn int8量化:

#先生成校准表
#Usage: ncnn2table [params] 

#	-?, -h, --help, --usage
#		print this message
#	-b, --bin (value:../../../models/yolov5/yolov5s-sim.bin)
#		path to ncnn.bin file
#	-c, --swapRB
#		flag which indicates that swap first and last channels in 3-channel image is necessary
#	-i, --images (value:./images)
#		path to calibration images folder
#	-m, --mean
#		value of mean (mean value, default is 104.0,117.0,123.0)
#	-n, --norm
#		value of normalize (scale value, default is 1.0,1.0,1.0)
#	-o, --output (value:../../../models/yolov5/yolov5s-sim.table)
#		path to output calibration table file
#	-p, --param (value:../../../models/yolov5/yolov5s-sim.param)
#		path to ncnn.param file
#	-s, --size
#		the size of input image(using the resize the original image,default is w=224,h=224)
#	-t, --thread (value:4)
#		count of processing threads

#example: ./ncnn2table --param=squeezenet-fp32.param --bin=squeezenet-fp32.bin --images=images/ --output=squeezenet.table --mean=104.0,117.0,123.0 --norm=1.0,1.0,1.0 --size=224,224 --swapRB --thread=2
../../build/tools/quantize/ncnn2table --param=yolov5s-sim-orig.param --bin=yolov5s-sim-orig.bin --images=images/ --output=yolov5s-sim-orig.table --mean=104.0,117.0,123.0 --norm=1.0,1.0,1.0 --size=640,640 --swapRB --thread=2

#再执行量化 ./ncnn2int8 [inparam] [inbin] [outparam] [outbin] [calibration table]
../../build/tools/quantize/ncnn2int8 yolov5s-sim-orig.param yolov5s-sim-orig.bin yolov5s-int.param yolov5s-int8.bin yolov5s-sim-orig.table

ubuntu下用vscode调试ncnn代码变量设置:

#task.json
{
    "tasks": [
        {
            "type": "shell",
            "label": "C/C++: g++ build active file",
            "command": "/usr/bin/g++",
            "args": [
                "-g",
                "${workspaceFolder}/yolov5.cpp",
                "-o",
                "${fileDirname}/${fileBasenameNoExtension}",
                "-std=c++11",
                "-fopenmp",
                "-I${workspaceFolder}/../src",
                "-I${workspaceFolder}/../build/src",
                "-I/usr/local/include/opencv4",
                "-L${workspaceFolder}/../build/src",
                "-lncnn",
                "-L/usr/local/lib",
                "-lopencv_aruco",
                "-lopencv_bgsegm",
                "-lopencv_bioinspired",
                "-lopencv_calib3d",
                "-lopencv_ccalib",
                "-lopencv_core",
                "-lopencv_cudaarithm",
                "-lopencv_cudabgsegm",
                "-lopencv_cudacodec",
                "-lopencv_cudafeatures2d",
                "-lopencv_cudafilters",
                "-lopencv_cudaimgproc",
                "-lopencv_cudalegacy",
                "-lopencv_cudaobjdetect",
                "-lopencv_cudaoptflow",
                "-lopencv_cudastereo",
                "-lopencv_cudawarping",
                "-lopencv_cudev",
                "-lopencv_datasets",
                "-lopencv_dnn_objdetect",
                "-lopencv_dnn",
                "-lopencv_dpm",
                "-lopencv_face",
                "-lopencv_features2d",
                "-lopencv_flann",
                "-lopencv_freetype",
                "-lopencv_fuzzy",
                "-lopencv_gapi",
                "-lopencv_hdf",
                "-lopencv_hfs",
                "-lopencv_highgui",
                "-lopencv_imgcodecs",
                "-lopencv_img_hash",
                "-lopencv_imgproc",
                "-lopencv_line_descriptor",
                "-lopencv_ml",
                "-lopencv_objdetect",
                "-lopencv_optflow",
                "-lopencv_phase_unwrapping",
                "-lopencv_photo",
                "-lopencv_plot",
                "-lopencv_quality",
                "-lopencv_reg",
                "-lopencv_rgbd",
                "-lopencv_saliency",
                "-lopencv_shape",
                "-lopencv_stereo",
                "-lopencv_stitching",
                "-lopencv_structured_light",
                "-lopencv_superres",
                "-lopencv_surface_matching",
                "-lopencv_text",
                "-lopencv_tracking",
                "-lopencv_videoio",
                "-lopencv_video",
                "-lopencv_videostab",
                "-lopencv_xfeatures2d",
                "-lopencv_ximgproc",
                "-lopencv_xobjdetect",
                "-lopencv_xphoto",
                "-L/usr/lib/x86_64-linux-gnu",
                "-lvulkan",
                "-L${workspaceFolder}/../build/glslang/glslang",
                "-lglslang",
                "-L${workspaceFolder}/../build/glslang/glslang/OSDependent/Unix",
                "-lOSDependent",
                "-L${workspaceFolder}/../build/glslang/OGLCompilersDLL",
                "-lOGLCompiler",
                "-L${workspaceFolder}/../build/glslang/SPIRV",
                "-lSPIRV"
            ],
            "options": {
                "cwd": "${workspaceFolder}"
            },
            "problemMatcher": [
                "$gcc"
            ],
            "group": {
                "kind": "build",
                "isDefault": true
            }
        }
    ],
    "version": "2.0.0"
}

关键点:"-std=c++11", "-fopenmp",-lncnn,-lvulkan,-lglslang,-lOSDependent,-lOGLCompiler,-lSPIRV;

参考https://zhuanlan.zhihu.com/p/275989233?utm_source=qq学习如何自定义层、如何修改网络参数、如何进行模型转换。

4.2 pyTorch mobile

官方地址:https://pytorch.org/mobile/home/

  • 12
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: yolov5-pytorch模型部署可以通过以下步骤实现: 1. 安装必要的依赖库,如pytorch、numpy、opencv等。 2. 下载yolov5-pytorch模型,并将其加载到内存中。 3. 准备待检测的图像或视频数据。 4. 对待检测的数据进行预处理,如缩放、归一化等。 5. 将预处理后的数据输入到yolov5模型中进行检测。 6. 解析检测结果,并将其可视化或保存到文件中。 7. 可以将部署好的模型封装成API接口,供其他应用程序调用。 需要注意的是,模型部署的具体实现方式可能因应用场景而异,例如在嵌入式设备上部署时可能需要进行模型压缩和量化等操作。 ### 回答2: yolov5-pytorch是一种目标检测算法,能够在图像中检测到人、车、建筑等物体,因此在工业生产、医学影像、智能交通等领域得到了广泛的使用。在应用场景中,通常需要将yolov5-pytorch模型部署在服务器上,以便实现实时检测与处理的需求。 要部署yolov5-pytorch模型,需要以下步骤: 1. 准备工作 - 安装pytorch和opencv等依赖库; - 下载yolov5-pytorch源码; - 准备训练集并训练模型。 2. 模型测试 对于训练好的模型,需要进行测试以验证其性能。 - 使用测试集或者视频等数据进行测试; - 可以使用官方提供的test.py或者自定义脚本进行测试; - 统计模型的 AP、F1 score、precision等数据,并分析模型性能和精度。 3. 模型部署 - 可以使用flask等框架进行部署; - 按照官方提供的推理代码进行部署; - 必要时进行模型量化、裁剪等优化操作,以减小模型大小和加速推理速度; - 针对不同的应用场景,可以构建不同的数据预处理和后处理流程,提高模型的优化和性能。 总之,对于yolov5-pytorch模型部署来说,关键是理解原理和基本操作,并结合实际应用场景进行优化和测试。只有在实践中不断探索和改进,才能够实现高效、精确的目标检测应用。 ### 回答3: YOLOv5是最近比较火的目标检测模型,其结构简单,速度快,准确率高,因此得到了广泛的应用。在生产环境中,我们需要将YOLOv5模型部署到特定的硬件设备上,以便快速地对图像或视频流进行实时的目标检测和识别。本文将介绍如何将YOLOv5模型部署Pytorch环境中。 1. 准备工作 在开始部署模型之前,我们需要做一些准备工作: - 安装Pytorch和torchvision - 下载YOLOv5源代码 - 下载预训练权重文件 2. 模型转换 我们需要将YOLOv5的模型转换成适合部署的格式。YOLOv5的模型结构采用Pytorch实现,我们需要将其转换为ONNX格式,以便部署到不同的硬件设备上。通过执行以下命令可以将模型转换为ONNX格式: python models/export.py --weights yolov5s.pt --img 640 --batch 1 3. 部署模型 将生成的ONNX模型导入到Pytorch环境中,并使用特定的库将其部署到硬件设备上。部署的目标设备可能有所不同,例如,我们可以将模型部署到树莓派、Jetson Nano等低功耗嵌入式设备,也可以将其部署到高端GPU服务器中,以实现更快速的目标检测。 在部署模型时,我们需要使用特定的库和API,例如TensorRT、OpenVino等。这些库可以提高模型在不同硬件设备上的性能和速度。 4. 测试模型 部署模型后,我们需要对其进行测试。我们可以使用现有的数据进行测试,也可以使用摄像头或者图像流实时进行目标检测。我们需要对检测结果进行验证,包括检测结果是否准确、检测速度是否满足要求等。 5. 优化模型部署模型时,我们也需要考虑优化模型以提高其性能和速度。优化模型的方法包括: - 模型剪枝和量化 - 使用特定的库和API - 模型硬件加速 总结 通过以上步骤,我们可以将YOLOv5模型部署Pytorch环境中,并实现高效的目标检测。随着硬件设备的不断升级和优化,我们可以不断地探索如何优化模型以适应更多的应用场景,提高模型的性能和效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值