背景
音频质量检测模型训练中,纯净高质量的音频数据集比较好获得,但是损伤音频的数据集比较少,而且损伤音频的质量得分也很难评估。我们采用了一种只依靠纯净高质量的语音数据集来制作低质量音频并打分的方法。
在语音质量评估中,有很多主观和客观的评价方法。主观的评价方法就是人通过听觉感受来评价音频质量的好坏,并进行打分,常用的评分标准是MOS(Mean Opinion Score)。MOS是国际电信联盟(ITU)在语音质量的主观评价方法ITU-T P.800标准里提出的,该标准是对电话传输系统中声音质量主观评价的概述,其本质就是MOS方法。同时给出语音质量主观评价的普遍方法和普遍测试环境,其他所有测试都遵循该建议,特别是测试环境(在所有的主观评价方法中基本相同)。为完成MOS评价得分,需要大量评测人员对音频质量进行打分,分值范围为1-5分,分数越高表示音频质量越好。一般情况下MOS值大于4的被认为是质量比较好的语音,小于3的则被认为语音质量不合格。
客观的语音质量评估方法即通过算法来评估语音质量,主要有2类,有参考和无参考的语音质量评估方法。两者的主要区别在于是否需要标准音频参考。有参考的除了待评估的音频,还需要一个对应的高质量无损伤的音频作为参考,代表算法如PESQ(Perceptual evaluation of speech quality);而无参考的评估方法直接对待评估音频进行打分,代表算法如P.563。我们的方法采用了PESQ算法。PESQ算法需要带噪声的衰减信号和一个原始的参考信号。首先,将两个