聚类调整标准误笔记

1. 何为聚类标准误

标准误在统计推断中发挥着至关重要的作用,直接影响着系数的显著性和置信区间,并最终影响到假设检验的结论。因此,正确地估计标准误在实证分析的过程中显得尤为重要。当干扰项满足「独立同分布 (iid)」 条件时, OLS 所估计的标准误是无偏的。但是当误差项之间存在相关性时,OLS 所估计的标准误是有偏的,不能很好地反映估计系数的真实变异性 (Petersen, 2009),故需要对标准误进行调整。在多种调整标准误的方式中,「聚类调整标准误 (cluster)」是一种有效的方法 (Petersen, 2009)。

异方差问题是引起标准误变化的主要问题。

2. 标准误的作用

(1)构建 t 统计量。在进行统计推断时,需要构建 t 统计量来对单个参数进行假设检验

(2)构建置信区间。利用 β的标准误还可以构建总体参数 β的置信区间

3. 聚类调整标准误的基本思想

使用聚类方法调整标准误时,放宽了随机误差项「独立同分布」的假定,要点如下:

 (1)允许组内个体的干扰项之间存在相关性;

 (2)不同组之间个体的干扰项之间彼此不相关;

 (3)系数估计值仍然采用 OLS 估计值,因为它是无偏的。

一维聚类调整标准误

*-截面数据,在公司层面进行聚类,以下两种写法等价
  reg y x, cluster(id) 
  reg y x, vce(cluster id)  
  
*-面板数据,在公司层面进行聚类,以下三种写法等价
  xtset id year
  xtreg y x, fe cluster(id)  
  xtreg y x, fe vce(cluster id)
  xtreg y x, fe robust  // If you specify -xtreg, fe robust-, Stata will automatically, and without even telling you, use vce(cluster panel_variable) instead. (This is true since version 13.)

*-面板数据,在省份层面进行聚类(地区层面聚类,t值偏小)
  xtset id year
  xtreg y x, fe vce(cluster prvcnm) nonest

二维聚类调整

help vce2way	 // Cameron et al. (2011), 可以估计二维SE, 支持 xtreg
webuse "nlswork.dta", clear
vce2way regress ln_wage age grade, cluster(idcode year)

2. 考虑在什么级别对标准误进行聚类

是对个体的、县的、省的还是行业的标准误进行聚类呢?

在Stata中,聚类稳健标准(cluster-robust standard errors)是一种用于处理异方差和自相关的标准估计方法。聚类稳健标准的计算方式是根据聚类变量对观察单位进行分组,然后在每个组内计算标准。这种方法能够更准确地估计参数的标准,尤其是在存在自相关或异方差的情况下。 与普通稳健标准相比,聚类稳健标准的估计结果更加可靠,因为它能够纠正因同一州不同时期之间的扰动项自相关而导致的偏差问题。普通稳健标准在处理自相关问题时默认扰动项是独立同分布的,这可能会导致估计结果的不准确。 在一些实证研究中,使用聚类稳健标准能够更好地控制异方差和自相关的问题,从而提供更可靠的统计推断。聚类稳健标准的计算方式可以通过Stata的cluster选项来实现。 需要注意的是,聚类稳健标准并不是适用于所有情况的最佳选择。在某些情况下,可能需要考虑其他的标准估计方法,如混合回归或LSDV方法。这些方法能够更好地解决特定的数据结构和假设条件下的标准估计问题。 因此,在选择标准估计方法时,需要根据具体的研究问题和数据特征进行综合考虑。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [(10)stata的基本使用--短面板数据处理](https://blog.csdn.net/qq_42830971/article/details/109330489)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值