2025 AI“平替”危机:大批程序员真的会被取代吗?

0e9569f4515d8c499b873f0f6c5afb2f.jpeg

来源:CSDN(ID:CSDNnews)

作者:宝玉

责编:Echo Tang

在 2024 年底,OpenAI 发布了全新的推理模型 o3,表现相当惊艳:它在世界级编程比赛中能拿到第 175 名,也就是可以打败 99.9% 的参赛者。于是很多人又开始讨论:程序员是不是要凉了?2025 年,真的会有大批程序员被 AI 替代吗?除了软件行业,AI 会不会也让其他行业进入“平替”危机?

接下来,我想结合自己对软件行业的观察,谈谈 AI 发展的最新动态,以及它对初级程序员、在校学生、中高级工程师和管理者各自带来的影响,希望给你一些启发和思考。

AI 与软件行业:到底谁会被取代?

软件行业和 AI 的结合是最紧密的。从近几年 AI 在编程能力上的突飞猛进来看,软件领域确实“首当其冲”地感受到冲击。

  • AI 能力提升:模型的推理和生成代码能力越来越强,像 Claude Sonnet 3.5、OpenAI o1 等都已经能大幅帮助开发者减轻负担。

  • 自动化程度:一些初级、重复性的开发工作更容易被 AI 覆盖,甚至出现了类似 Devin 这样的“自动修 Bug”工具。

那么问题来了:“程序员会不会彻底失业?”或者稍微谨慎一点:“初级程序员会被取代吗?”先别急着得出结论,让我们一步步看下去。

AI 助力编程:能提高多少效率?

AI 带来的效率提升

借助 AI 代码编辑器(Cursor、Windsurf、GitHub Copilot 等),在很多场景可以显著加快编程速度:

  • 自动补全代码

  • 写单元测试

  • 从设计稿直接生成前端 UI

  • 搭建项目脚手架

从我的实践来看,有些环节效率可提升 50% 以上,整体则能稳稳提高 20% 左右。

为何企业还没大规模使用?

尽管效率提升诱人,但要想真正享受 AI 编程红利,需要满足几项条件:

  • 使用最强的模型:例如 Claude Sonnet 3.5 或 OpenAI o1。如果模型本身的编程能力不够,就难有质的帮助。

  • 工具配套完善:要搭配先进的 AI 代码编辑器,而不是仅凭网页版的简单调用。

  • 代码数据安全合规:很多企业担心源代码上传到云端会带来安全隐患,需要等待自部署或开源模型能力成熟后再应用。

  • 团队熟练使用:要学会写提示词、掌握如何拆分复杂任务,让 AI 能更好地产出正确代码。

另外,还有一个容易被忽略的人性层面:

  • 公司当然希望通过 AI 提升效率,但员工不一定愿意学,毕竟对个人而言,“省时”并不等于“涨工资”;甚至还会担心“学会 AI,岂不是我自己给自己挖坑?”。

  • 与之相反,一些独立开发者、自由职业者更乐于拥抱 AI,因为效率提升带来的收益立刻能反映到个人收入上。

不过,这种保守态度不会持续太久。到 2025 年,AI 辅助编程大概率会成为常态,就像我们如今用高级 IDE 而不是用记事本写代码一样。在“内卷”的压力下,团队里不用 AI 反而会掉队。

AI 会让程序员失业吗?

编程只是软件开发的一部分

AI 写代码并不等于程序员就被取代。软件开发是一个系统工程:

  • 需求沟通:产品经理需要和客户或市场沟通,确定需求;

  • 架构设计:程序员要抽象需求、搭建框架;

  • 测试与部署:写完代码还要经过测试、上线和维护。

眼下,AI 在编码阶段确实可以替代一部分人力,但其他流程仍需要人工主导。就算有像 Devin 这样的工具,能自动执行简单任务或修小 Bug,但在面对复杂模块时,AI 也常常陷入“卡死状态”,无法完成所有工作。

影响初级岗位

AI 在编程能力上的进一步提升,确实会让“初级程序员”面临更大竞争,因为很多简单任务可以让非专业开发者借助 AI 来完成,或者由高级工程师通过 AI 工具直接“前置”搞定。

  • 一旦企业意识到可以省掉部分简单的编程人力,初级岗位会被“削减”或合并,导致毕业生或技能不够扎实的人员就业更困难。

  • 不过这并不代表“程序员”这个职业消失。工程师依然要负责架构、需求抽象、测试和维护等更高层次的工作。

AI 正在重塑软件开发范式

我在文章《AI 辅助编程给软件工程带来的需求开发范式变化》[1]中提到:AI 对传统软件开发模式影响深远,主要体现在:

简单需求不再依赖完整研发流程

  • 不少原型级别的小功能,通过 AI 就可以一次性搞定,甚至让产品经理直接生成初步版本。

专业程序员“和 AI 结对”

  • 程序员不再从头手写全部代码,而是更像“指挥员”,负责需求拆分、提示词编写、审核并调试 AI 生成的代码。

  • 简单、重复的部分丢给 AI,自己腾出精力思考更高级的设计问题。

团队规模可能缩小,效率却不降

  • 人数减少,分工精简;但是“人 + AI”的效率不一定比原来更低。

  • 由此带来的连锁反应是:管理层级变少,对纯管理岗位需求减少。

初级岗位大量减少

  • 一些原本需要由初级程序员完成的简单需求,正被“非专业编程者 + AI” 或“更资深程序员 + AI” 抢走。

  • 对新人来说,如果没有核心竞争力,可能很难找到合适机会。

计算机专业还值得学吗?

很多人担心:“既然 AI 能把初级程序员的活儿都干了,那学计算机还有前途吗?” 我认为:

  • 岗位少了,但需求并没有减少:软件开发整体需求还是在持续增长,只是对初级能力的依赖度降低了。

  • 竞争会更激烈:低水平刷题可能已经不够,需要真正掌握软件工程知识,也要学会用好 AI。

  • 学习速度更快:

(1)以前遇到问题需要自己上论坛“求大佬解答”;现在大部分技术难题可以直接问 AI。

(2)AI 在代码生成时,也会呈现出“高质量范例”,对初学者来说,这比“屎山代码”可好太多。

(3)有了随时可问的“AI 导师”,从初级跨越到中级的时间可能只需要 2~3 年,比过去的 3~5 年要快。

所以如果你是计算机专业的学生,反倒“最坏的时代,也是最好的时代”:竞争升级,但你的学习效率也在加倍提升。只要充分利用 AI,提早动手做项目、实习,提前累积实战经验,依然能在就业市场上具备很强优势。

给不同群体的建议

对初级程序员/在校生

  • 尽快拥抱 AI 工具,学会写 Prompt,借助 AI 辅助开发。

  • 尽可能多参与真实项目(可由 AI 帮忙起步),提早获取工作经验。

  • 刷题依旧重要,但更重要的是掌握软件工程全流程,能够独立解决问题。

对中高级程序员

  • 角色转型:从“纯手动写代码”转向“设计 + 指挥 + 审核”AI 产物。

  • 深耕架构和需求分析:让 AI 处理具体逻辑,自己负责更高层次决策。

  • 保持学习热情:AI 迭代速度很快,经常尝试新工具和新模型,别被新一波浪潮冲走。

对管理者/项目负责人

  • 正视 AI 潜力与挑战:积极推动企业内部的 AI 转型,调整流程和考核方式。

  • 注重数据安全和合规:想要大规模使用 AI,就需要考虑隐私和知识产权问题。

  • 重新评估团队结构:在团队规模和人才培养上做出更灵活的布局,别盲目追求“人海战术”。

AI 不会取代程序员,但会重塑软件开发

每次 AI 模型能力突破,总有人会喊“程序员要失业了,人人都能写代码”。但现实是:软件工程从需求到运维的复杂链路,让 AI 还没法一条龙包办。尽管未来或许会出现 AGI(通用人工智能),真正实现“全自动开发”,但起码眼下还差得远。

然而,AI 已经在重塑软件开发:

  • 2024 年,我们看到了 AI 编程显著提升效率、完成简单原型的可能性。

  • 到 2025 年,越来越多企业和团队会把 AI 编程融入正式流程。初级需求由产品经理或资深工程师与 AI 一起完成,更复杂的任务依然由专业工程师主导。

  • 初级程序员需要快速晋级,中高级程序员要善用 AI 发挥最大价值,管理者需要思考如何拥抱这一趋势。

如果你是计算机专业的学生,记得别因为“AI 抢饭碗”而焦虑,而要善用 AI 工具加速成长;如果你已在岗位上多年,也别轻言“AI 编码不过如此”,要紧跟技术步伐,把自身定位从“搬砖”转向“策划与管理”。只有这样,才能在这股浪潮里生存乃至领跑。

结语

2025 年,AI 会进一步改变软件行业,绝不会一夜之间让程序员整体“下岗”,但眼前会影响初级程序员的就业是正在或者即将发生的事情。与其害怕被“平替”,不如两手一起抓:既掌握如何使用 AI 辅助开发,又借用 AI 快速学习,提升自身竞争力。

相关资料:

[1]https://baoyu.io/blog/ai-assisted-programming-software-engineering

原文地址:https://baoyu.io/blog/ai-replace-jobs-programmers-future-2025

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

203e679063f215900ba07992cb7e814f.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

7b2d9068a64036e47481bdf78aae6062.jpeg

截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告

  1. 2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案

  2. 未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇

  3. Deepmind:AI 加速科学创新发现的黄金时代报告

  4. Continental 大陆集团:2024 未来出行趋势调研报告

  5. 埃森哲:未来生活趋势 2025

  6. 国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景

  7. 哈尔滨工业大学:2024 具身大模型关键技术与应用报告

  8. 爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告

  9. 李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能

  10. 欧洲议会:2024 欧盟人工智能伦理指南:背景和实施

  11. 通往人工超智能的道路:超级对齐的全面综述

  12. 清华大学:理解世界还是预测未来?世界模型综合综述

  13. Transformer 发明人最新论文:利用基础模型自动搜索人工生命

  14. 兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告

  15. 麦肯锡全球研究院:2024 年全球前沿动态(数据)图表呈现

  16. 兰德公司:新兴技术领域的全球态势综述

  17. 前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战

  18. 美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)

  19. 罗戈研究:2024 决策智能:值得关注的决策革命研究报告

  20. 美国航空航天专家委员会:2024 十字路口的 NASA 研究报告

  21. 中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告

  22. GenAI 引领全球科技变革关注 AI 应用的持续探索

  23. 国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告

  24. 2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿

  25. 多模态可解释人工智能综述:过去、现在与未来

  26. 【斯坦福博士论文】探索自监督学习中对比学习的理论基础

  27. 《机器智能体的混合认知模型》最新 128 页

  28. Open AI 管理 AI 智能体的实践

  29. 未来生命研究院 FLI2024 年 AI 安全指数报告 英文版

  30. 兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版

  31. Linux 基金会 2024 去中心化与人工智能报告 英文版

  32. 脑机接口报告脑机接口机器人中的人机交换

  33. 联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版

  34. Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版

  35. Gartner2025 年重要战略技术趋势报告 英文版

  36. Fastdata 极数 2024 全球人工智能简史

  37. 中电科:低空航行系统白皮书,拥抱低空经济

  38. 迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战

  39. 哈佛博士论文:构建深度学习的理论基础:实证研究方法

  40. Science 论文:面对 “镜像生物” 的风险

  41. 镜面细菌技术报告:可行性和风险

  42. Neurocomputing 不受限制地超越人类智能的人工智能可能性

  43. 166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)

  44. 未来生命研究所:《2024 人工智能安全指数报告》

  45. 德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。

  46. 2024 世界智能产业大脑演化趋势报告(12 月上)公开版

  47. 联邦学习中的成员推断攻击与防御:综述

  48. 兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版

  49. Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版

  50. Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版

  51. MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告

  52. DeepMind:Gemini,一个高性能多模态模型家族分析报告

  53. 模仿、探索和自我提升:慢思维推理系统的复现报告

  54. 自我发现:大型语言模型自我组成推理结构

  55. 2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书

  56. 《自然杂志》2024 年 10 大科学人物推荐报告

  57. 量子位智库:2024 年度 AI 十大趋势报告

  58. 华为:鸿蒙 2030 愿景白皮书(更新版)

  59. 电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209

  60. 中国信通院《人工智能发展报告(2024 年)》

  61. 美国安全与新兴技术中心:《追踪美国人工智能并购案》报告

  62. Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?

  63. NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习

  64. LangChain 人工智能代理(AI agent)现状报告

  65. 普华永道:2024 半导体行业状况报告发展趋势与驱动因素

  66. 觅途咨询:2024 全球人形机器人企业画像与能力评估报告

  67. 美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告

  68. GWEC:2024 年全球风能报告英文版

  69. Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析

  70. 2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告

  71. 世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度

  72. 兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告

  73. 经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告

  74. 医学应用中的可解释人工智能:综述

  75. 复旦最新《智能体模拟社会》综述

  76. 《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述

  77. 《基础研究,致命影响:军事人工智能研究资助》报告

  78. 欧洲科学的未来 - 100 亿地平线研究计划

  79. Nature:欧盟正在形成一项科学大型计划

  80. Nature 欧洲科学的未来

  81. 欧盟科学 —— 下一个 1000 亿欧元

  82. 欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划

  83. DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告

  84. 兰德《人工智能和机器学习用于太空域感知》72 页报告

  85. 构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)

  86. 世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版

  87. 人工智能行业应用建设发展参考架构

  88. 波士顿咨询 2024 年欧洲天使投资状况报告 英文版

  89. 2024 美国制造业计划战略规划

  90. 【新书】大规模语言模型的隐私与安全

  91. 人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204

  92. 美国环保署 EPA2024 年版汽车趋势报告英文版

  93. 经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版

  94. 华为 2024 迈向智能世界系列工业网络全连接研究报告

  95. 华为迈向智能世界白皮书 2024 - 计算

  96. 华为迈向智能世界白皮书 2024 - 全光网络

  97. 华为迈向智能世界白皮书 2024 - 数据通信

  98. 华为迈向智能世界白皮书 2024 - 无线网络

  99. 安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版

  100. 2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告

  101. 《2024 年 AI 现状分析报告》2-1-3 页.zip

  102. 万物智能演化理论,智能科学基础理论的新探索 - newv2

  103. 世界经济论坛 智能时代的食物和水系统研究报告

  104. 生成式 AI 时代的深伪媒体生成与检测:综述与展望

  105. 科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版

  106. 计算机行业专题报告 AI 操作系统时代已至 - 241201

  107. Nature 人工智能距离人类水平智能有多近?

  108. Nature 开放的人工智能系统实际上是封闭的

  109. 斯坦福《统计学与信息论》讲义,668 页 pdf

  110. 国家信息中心华为城市一张网 2.0 研究报告 2024 年

  111. 国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版

  112. 大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战

  113. 毕马威 2024 年全球半导体行业展望报告

  114. MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119

  115. DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管

  116. 《人工智能和机器学习对网络安全的影响》最新 273 页

  117. 2024 量子计算与人工智能无声的革命报告

  118. 未来今日研究所:2024 技术趋势报告 - 广义计算篇

  119. 科睿唯安中国科学院 2024 研究前沿热度指数报告

  120. 文本到图像合成:十年回顾

  121. 《以人为中心的大型语言模型(LLM)研究综述》

  122. 经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版

  123. 波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版

  124. 理解世界还是预测未来?世界模型的综合综述

  125. GoogleCloudCSA2024AI 与安全状况调研报告 英文版

  126. 英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施

  127. 花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告

  128. 国际可再生能源署 IRENA2024 年全球气候行动报告

  129. Cell: 物理学和化学 、人工智能知识领域的融合

  130. 智次方 2025 中国 5G 产业全景图谱报告

上下滑动查看更多

### 回答1: 不是的,我并不能取代程序员。作为一种人工智能技术,我可以协助程序员完成一些重复性或模板化的任务,但是程序员仍然是非常重要的,因为他们拥有创造性和判断力,并且可以使用自己的技能解决问题和设计新系统。程序员人工智能的关系应该是协作的,而不是竞争的。 ### 回答2: 目前来说,程序员不会被我取代。虽然人工智能和机器学习的发展迅速,但目前的技术水还无法完全取代程序员的工作。编程需要深入的逻辑思维能力、抽象思维能力和创造力,这些是机器目前所无法达到的。程序员也不仅仅是写代码的工人,他们还需要根据需求进行系统设计、进行项目管理和团队协作等。这些职责是人类独有的,机器无法做到。 此外,编程领域的技术和需求也在不断发展和变化,程序员需要进行学习和更新自己的技能和知识。他们需要学习新的编程语言、工具和框架来保持自己的竞争力。而机器并不具备学习的能力,无法自主地更新和适应新的技术。 尽管人工智能和机器学习的发展给某些重复性和机械化的编程工作带来了威胁,但人类的智慧和创造力仍然是不可替代的。程序员可以通过利用人工智能和机器学习等技术的优势,提高自己的工作效率和质量,从而更好地适应和应对未来的变化。 所以,总体上来说,在可预见的未来,程序员不会被完全取代。他们的角色和职责可能会发生变化,但他们的专业知识、创造力和人类独有的智慧仍将在编程领域中起到不可替代的作用。 ### 回答3: 作为一个人工智能助手,我认为虽然人工智能技术的发展迅猛,但程序员不会被完全取代。 首先,尽管人工智能技术能够模拟人类的智能和推理能力,但目前的人工智能仍然存在很多局限性。人工智能更擅长处理大量的重复性任务和规则化的工作,例如数据分析、图像识别等,然而对于复杂的创造性和判断性工作,人类的智慧和思维仍然无可替代。 其次,程序员不仅仅是编写代码的人,他们还在开发软件和系统的过程中扮演着重要的角色。程序员不仅需要具备编程能力,还需要了解问题的本质以及解决方案的设计。他们需要思考如何将复杂的需求转化为可执行的代码,解决问题并优化性能。这种创造性思维和问题解决能力是人工智能无法取代的。 此外,随着科技的发展,新兴技术的涌现会为程序员创造更多的就业机会。例如,物联网、大数据、云计算、区块链等领域的快速发展,需要程序员不断学习和适应新技术,以满足市场需求。 总之,虽然人工智能的发展给某些程序员工作带来了一定的压力,但是程序员的职能和价值仍然非常重要。他们具备独特的技能和专业知识,可以为人工智能提供支持和完善。未来,程序员需要不断提升自己的技术能力和专业素养,与人工智能实现良好的互补,共同推动科技的发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值