Evo 2作者、斯坦福计算生物学家 Brian Hie:AI可发现人类无法看到的模式

图片

来源:ScienceAI

编辑:ScienceAI

最近,科学家发布了有史以来最大的生物学人工智能(AI)模型 ——Evo 2。

该模型基于 128,000 个基因组进行训练,涵盖了从人类到单细胞细菌和古细菌的生命之树,可以从头开始编写整个染色体和小基因组。它还可以理解现有的 DNA,包括与疾病相关的难以解释的「非编码」基因变体。

Evo 2 由美国 Arc 研究所(Arc Institute)和斯坦福大学的研究人员以及芯片制造商 NVIDIA 共同开发,科学家可以通过线上界面使用,也可以免费下载其软件代码、数据和复制模型所需的其他参数。

图片

项目链接:https://github.com/ArcInstitute/evo2

早在去年 11 月,Evo 的第一个版本 (在 80,000 种细菌、古细菌和病毒的基因组上进行训练)就登上了《Science》杂志封面。

图片

Evo 及 Evo 2 的突破是不言而喻的,研究团队是如何实现这些突破的?

在 Evo 2 发布之前,外媒《Quanta Magazine》曾采访 Evo 研究团队主要成员、论文通讯作者 —— 斯坦福大学计算生物学家 Brian Hie,采访围绕 DNA 与人类语言之间的相似之处,Evo 能做什么和不能做什么等话题展开。Brian Hie 表示:「人类很难理解生物序列」,而「Evo 发现了人类无法看到的模式」。

图片

图示:Evo 团队核心成员,Brian Hie(中)。

ScienceAI 对《Quanta Magazine》访谈核心内容进行了不改变原意的编译、整理,内容如下。

是什么让你认为 DNA 可以像语言一样处理?

DNA 本身像人类自然语言一样是序列化的。它是由离散的「token」或构建块组成的序列。我们将人类自然语言 tokenize 为单词、字母或汉字。在生物学中,一个 token 可以对应一个 DNA 碱基对或一个氨基酸。

就像自然语言一样,DNA 也有其自然结构。这些序列并不是随机的。自然语言中的许多结构也是非正式的,可能是模糊的,并且一直在变化。同样地,DNA 序列也有一些模糊性。相同的序列在不同的上下文中可能意味着不同的事物。

怎么想到将 LLM 应用于 DNA?

分子生物学的中心法则是一个非常美丽的东西。它指出 DNA 编码 RNA,RNA 编码蛋白质。所以如果你在 DNA 上训练一个模型,并且它是一个好模型,你就可以免费获得 RNA 和蛋白质的语言建模,因为 DNA 和蛋白质序列之间有直接的对应关系。

你还可以在基因组本身上进行训练:基因在基因组上彼此相邻。当你训练一个蛋白质语言模型时,你基本上会取整个基因组并剪掉所有编码蛋白质的部分,然后分别训练所有这些小部分。但这忽略了蛋白质所在的广阔遗传背景。特别是在微生物基因组中,功能相关的蛋白质在基因组上直接相邻,所以这些蛋白质编码区域在基因组上的顺序很重要,而在蛋白质语言模型中失去了这些信息。

我意识到在更基础的层次上训练模型 —— 从蛋白质下降到 DNA—— 可以扩展模型的能力。

如何训练 Evo「阅读」DNA?

蛋白质和 DNA 语言模型之间的一个重要区别是模型用于进行下一个碱基对预测的序列长度,我们称之为「上下文长度」。上下文长度类似于一个人一次可以看到的小说的一两页。Evo 是在由许多基因组组成的「小说」上训练的。

这需要一些技术发展,因为长的上下文长度消耗大量的计算能力。计算需求随着上下文长度的增加呈二次方增长,但幸运的是,已有一些研究找到了方法来减少长上下文所需计算。斯坦福实验室的一名学生帮我们将相关进展应用到我们的 DNA 模型中。

Evo 的训练数据集也很重要。从蛋白质语言建模中,我了解到序列多样性很重要。当向模型展示生命的进化替代方案,模型就可以利用这些替代方案来学习一般规则。

你是如何测试 Evo 的,它的表现如何?

我们给 Evo 提供了具有各种突变的蛋白质编码 DNA 序列。任务是预测这些突变的「进化可能性」,即它们在自然界中存在的概率。被认为可能的突变应该在实验室中保持或改善蛋白质的功能,不可能的突变应该与功能不良相关。

Evo 没有任何关于功能的明确知识。它只知道过去进化中使用了哪些突变。此外,模型仅在 DNA 上进行训练,没有任何关于 DNA 的哪些部分与蛋白质匹配的指导。因此,Evo 必须弄清楚 DNA 如何编码蛋白质,以及蛋白质在基因组上的起始和终止位置。

我们通过蛋白质功能的实验测试对 Evo 得出的可能性进行了评分。我们发现:如果某个碱基对在 Evo 模型下具有高可能性,那么该碱基对很可能会保持或改善蛋白质的功能;如果该碱基对的可能性较低,那么将其插入序列中很可能会破坏蛋白质功能。

LLM 容易出错,Evo 是否更准确?

对于 ChatGPT,你希望它能准确掌握事实。而在生物学中,这些「幻觉」几乎可以被视为一种特性而非缺陷。如果某个奇特的新序列在细胞中起作用,生物学家会认为这是新颖的。

但 Evo 确实也会犯错。例如,它可能根据某个序列预测出一种蛋白质结构,但当我们在实验室中合成这种蛋白质时,结果可能是错误的。

原文链接:https://www.quantamagazine.org/the-poetry-fan-who-taught-an-llm-to-read-and-write-dna-20250205/

阅读最新前沿科技趋势报告,请访问欧米伽研究所的“未来知识库”

https://wx.zsxq.com/group/454854145828

6b835e1299883206764edb274785642a.jpeg

未来知识库是“欧米伽未来研究所”建立的在线知识库平台,收藏的资料范围包括人工智能、脑科学、互联网、超级智能,数智大脑、能源、军事、经济、人类风险等等领域的前沿进展与未来趋势。目前拥有超过8000篇重要资料。每周更新不少于100篇世界范围最新研究资料。欢迎扫描二维码或访问https://wx.zsxq.com/group/454854145828 进入。

144a5268caa0960d85ff427892392385.jpeg

截止到12月25日 ”未来知识库”精选的100部前沿科技趋势报告

  1. 2024 美国众议院人工智能报告:指导原则、前瞻性建议和政策提案

  2. 未来今日研究所:2024 技术趋势报告 - 移动性,机器人与无人机篇

  3. Deepmind:AI 加速科学创新发现的黄金时代报告

  4. Continental 大陆集团:2024 未来出行趋势调研报告

  5. 埃森哲:未来生活趋势 2025

  6. 国际原子能机构 2024 聚变关键要素报告 - 聚变能发展的共同愿景

  7. 哈尔滨工业大学:2024 具身大模型关键技术与应用报告

  8. 爱思唯尔(Elsevier):洞察 2024:科研人员对人工智能的态度报告

  9. 李飞飞、谢赛宁新作「空间智能」 等探索多模态大模型性能

  10. 欧洲议会:2024 欧盟人工智能伦理指南:背景和实施

  11. 通往人工超智能的道路:超级对齐的全面综述

  12. 清华大学:理解世界还是预测未来?世界模型综合综述

  13. Transformer 发明人最新论文:利用基础模型自动搜索人工生命

  14. 兰德公司:新兴技术监督框架发展的现状和未来趋势的技术监督报告

  15. 麦肯锡全球研究院:2024 年全球前沿动态(数据)图表呈现

  16. 兰德公司:新兴技术领域的全球态势综述

  17. 前瞻:2025 年人形机器人产业发展蓝皮书 - 人形机器人量产及商业化关键挑战

  18. 美国国家标准技术研究院(NIST):2024 年度美国制造业统计数据报告(英文版)

  19. 罗戈研究:2024 决策智能:值得关注的决策革命研究报告

  20. 美国航空航天专家委员会:2024 十字路口的 NASA 研究报告

  21. 中国电子技术标准化研究院 2024 扩展现实 XR 产业和标准化研究报告

  22. GenAI 引领全球科技变革关注 AI 应用的持续探索

  23. 国家低空经济融创中心中国上市及新三板挂牌公司低空经济发展报告

  24. 2025 年计算机行业年度策略从 Infra 到 AgentAI 创新的无尽前沿

  25. 多模态可解释人工智能综述:过去、现在与未来

  26. 【斯坦福博士论文】探索自监督学习中对比学习的理论基础

  27. 《机器智能体的混合认知模型》最新 128 页

  28. Open AI 管理 AI 智能体的实践

  29. 未来生命研究院 FLI2024 年 AI 安全指数报告 英文版

  30. 兰德公司 2024 人工智能项目失败的五大根本原因及其成功之道 - 避免 AI 的反模式 英文版

  31. Linux 基金会 2024 去中心化与人工智能报告 英文版

  32. 脑机接口报告脑机接口机器人中的人机交换

  33. 联合国贸发会议 2024 年全球科技创新合作促发展研究报告 英文版

  34. Linux 基金会 2024 年世界开源大会报告塑造人工智能安全和数字公共产品合作的未来 英文版

  35. Gartner2025 年重要战略技术趋势报告 英文版

  36. Fastdata 极数 2024 全球人工智能简史

  37. 中电科:低空航行系统白皮书,拥抱低空经济

  38. 迈向科学发现的生成式人工智能研究报告:进展、机遇与挑战

  39. 哈佛博士论文:构建深度学习的理论基础:实证研究方法

  40. Science 论文:面对 “镜像生物” 的风险

  41. 镜面细菌技术报告:可行性和风险

  42. Neurocomputing 不受限制地超越人类智能的人工智能可能性

  43. 166 页 - 麦肯锡:中国与世界 - 理解变化中的经济联系(完整版)

  44. 未来生命研究所:《2024 人工智能安全指数报告》

  45. 德勤:2025 技术趋势报告 空间计算、人工智能、IT 升级。

  46. 2024 世界智能产业大脑演化趋势报告(12 月上)公开版

  47. 联邦学习中的成员推断攻击与防御:综述

  48. 兰德公司 2024 人工智能和机器学习在太空领域感知中的应用 - 基于两项人工智能案例英文版

  49. Wavestone2024 年法国工业 4.0 晴雨表市场趋势与经验反馈 英文版

  50. Salesforce2024 年制造业趋势报告 - 来自全球 800 多位行业决策者对运营和数字化转型的洞察 英文版

  51. MicrosoftAzure2024 推动应用创新的九大 AI 趋势报告

  52. DeepMind:Gemini,一个高性能多模态模型家族分析报告

  53. 模仿、探索和自我提升:慢思维推理系统的复现报告

  54. 自我发现:大型语言模型自我组成推理结构

  55. 2025 年 101 项将 (或不会) 塑造未来的技术趋势白皮书

  56. 《自然杂志》2024 年 10 大科学人物推荐报告

  57. 量子位智库:2024 年度 AI 十大趋势报告

  58. 华为:鸿蒙 2030 愿景白皮书(更新版)

  59. 电子行业专题报告:2025 年万物 AI 面临的十大待解难题 - 241209

  60. 中国信通院《人工智能发展报告(2024 年)》

  61. 美国安全与新兴技术中心:《追踪美国人工智能并购案》报告

  62. Nature 研究报告:AI 革命的数据正在枯竭,研究人员该怎么办?

  63. NeurIPS 2024 论文:智能体不够聪明怎么办?让它像学徒一样持续学习

  64. LangChain 人工智能代理(AI agent)现状报告

  65. 普华永道:2024 半导体行业状况报告发展趋势与驱动因素

  66. 觅途咨询:2024 全球人形机器人企业画像与能力评估报告

  67. 美国化学会 (ACS):2024 年纳米材料领域新兴趋势与研发进展报告

  68. GWEC:2024 年全球风能报告英文版

  69. Chainalysis:2024 年加密货币地理报告加密货币采用的区域趋势分析

  70. 2024 光刻机产业竞争格局国产替代空间及产业链相关公司分析报告

  71. 世界经济论坛:智能时代,各国对未来制造业和供应链的准备程度

  72. 兰德:《保护人工智能模型权重:防止盗窃和滥用前沿模型》-128 页报告

  73. 经合组织 成年人是否具备在不断变化的世界中生存所需的技能 199 页报告

  74. 医学应用中的可解释人工智能:综述

  75. 复旦最新《智能体模拟社会》综述

  76. 《全球导航卫星系统(GNSS)软件定义无线电:历史、当前发展和标准化工作》最新综述

  77. 《基础研究,致命影响:军事人工智能研究资助》报告

  78. 欧洲科学的未来 - 100 亿地平线研究计划

  79. Nature:欧盟正在形成一项科学大型计划

  80. Nature 欧洲科学的未来

  81. 欧盟科学 —— 下一个 1000 亿欧元

  82. 欧盟向世界呼吁 加入我们价值 1000 亿欧元的研究计划

  83. DARPA 主动社会工程防御计划(ASED)《防止删除信息和捕捉有害行为者(PIRANHA)》技术报告

  84. 兰德《人工智能和机器学习用于太空域感知》72 页报告

  85. 构建通用机器人生成范式:基础设施、扩展性与策略学习(CMU 博士论文)

  86. 世界贸易组织 2024 智能贸易报告 AI 和贸易活动如何双向塑造 英文版

  87. 人工智能行业应用建设发展参考架构

  88. 波士顿咨询 2024 年欧洲天使投资状况报告 英文版

  89. 2024 美国制造业计划战略规划

  90. 【新书】大规模语言模型的隐私与安全

  91. 人工智能行业海外市场寻找 2025 爆款 AI 应用 - 241204

  92. 美国环保署 EPA2024 年版汽车趋势报告英文版

  93. 经济学人智库 EIU2025 年行业展望报告 6 大行业的挑战机遇与发展趋势 英文版

  94. 华为 2024 迈向智能世界系列工业网络全连接研究报告

  95. 华为迈向智能世界白皮书 2024 - 计算

  96. 华为迈向智能世界白皮书 2024 - 全光网络

  97. 华为迈向智能世界白皮书 2024 - 数据通信

  98. 华为迈向智能世界白皮书 2024 - 无线网络

  99. 安全牛 AI 时代深度伪造和合成媒体的安全威胁与对策 2024 版

  100. 2024 人形机器人在工业领域发展机遇行业壁垒及国产替代空间分析报告

  101. 《2024 年 AI 现状分析报告》2-1-3 页.zip

  102. 万物智能演化理论,智能科学基础理论的新探索 - newv2

  103. 世界经济论坛 智能时代的食物和水系统研究报告

  104. 生成式 AI 时代的深伪媒体生成与检测:综述与展望

  105. 科尔尼 2024 年全球人工智能评估 AIA 报告追求更高层次的成熟度规模化和影响力英文版

  106. 计算机行业专题报告 AI 操作系统时代已至 - 241201

  107. Nature 人工智能距离人类水平智能有多近?

  108. Nature 开放的人工智能系统实际上是封闭的

  109. 斯坦福《统计学与信息论》讲义,668 页 pdf

  110. 国家信息中心华为城市一张网 2.0 研究报告 2024 年

  111. 国际清算银行 2024 生成式 AI 的崛起对美国劳动力市场的影响分析报告 渗透度替代效应及对不平等状况英文版

  112. 大模型如何判决?从生成到判决:大型语言模型作为裁判的机遇与挑战

  113. 毕马威 2024 年全球半导体行业展望报告

  114. MR 行业专题报告 AIMR 空间计算定义新一代超级个人终端 - 241119

  115. DeepMind 36 页 AI4Science 报告:全球实验室被「AI 科学家」指数级接管

  116. 《人工智能和机器学习对网络安全的影响》最新 273 页

  117. 2024 量子计算与人工智能无声的革命报告

  118. 未来今日研究所:2024 技术趋势报告 - 广义计算篇

  119. 科睿唯安中国科学院 2024 研究前沿热度指数报告

  120. 文本到图像合成:十年回顾

  121. 《以人为中心的大型语言模型(LLM)研究综述》

  122. 经合组织 2024 年数字经济展望报告加强连通性创新与信任第二版

  123. 波士顿咨询 2024 全球经济体 AI 成熟度矩阵报告 英文版

  124. 理解世界还是预测未来?世界模型的综合综述

  125. GoogleCloudCSA2024AI 与安全状况调研报告 英文版

  126. 英国制造商组织 MakeUK2024 英国工业战略愿景报告从概念到实施

  127. 花旗银行 CitiGPS2024 自然环境可持续发展新前沿研究报告

  128. 国际可再生能源署 IRENA2024 年全球气候行动报告

  129. Cell: 物理学和化学 、人工智能知识领域的融合

  130. 智次方 2025 中国 5G 产业全景图谱报告

上下滑动查看更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值