-
爬山法(Hill Climbing):
- 不需要计算目标函数的梯度。
- 通过在当前解周围的邻域内随机探索,选择一个使得目标函数值增加(对于最大化问题)的解作为新的当前解。
- 可以想象一个盲人,看不到山体形状,只能靠一根拐杖在自己周围探索。
- 它是一种启发式搜索方法,可能会遇到局部最优解而不是全局最优解。
-
梯度下降法(Gradient Descent):
- 需要计算目标函数相对于参数的梯度(导数)。
- 通过沿着负梯度方向更新参数,以减少目标函数的值,对于最小化问题来说就是寻找函数的最小点。
- 可以想象一个视力正常的人,看得到山体形状,会沿着坡度最陡的方向走。
- 它是一种基于梯度信息的迭代优化算法,通常用于连续可微的函数,并可能找到全局最优解,尤其是在凸优化问题中。
梯度下降法通常可以比爬山法更快收敛到最优值,但代价是需要计算梯度。