Machine Learning
自动驾驶小学生
谢谢关注。代表作品:《Coursera自动驾驶课程24讲》:https://blog.csdn.net/cg129054036/category_10603636.html?spm=1001.2014.3001.5482
展开
-
2.Explore Your Data
Using Pandas to Get Familiar With Your Data任何机器学习项目的第一步都是熟悉数据。 您将使用Pandas库。 Pandas是科学家用于挖掘和处理数据的主要工具。 大多数人在他们的代码中将pandas缩写为pd。 我们使用如下命令执行此操作。[1]import pandas as pdPandas库中最重要的部分是DataFrame。 Da...翻译 2018-08-31 08:45:31 · 372 阅读 · 0 评论 -
0.Overview----Machine Learning
本文为Kaggle Learn的Machine Learning课程的中文翻译,原文链接为:https://www.kaggle.com/learn/machine-learning1.How Models Work The first step if you're new to machine learning2.Explore Your DataLoad data and...翻译 2018-09-22 14:09:26 · 262 阅读 · 0 评论 -
13.Data Leakage
本教程是ML系列的一部分。在此步骤中,你将学习什么是data leakage及如何预防它。 What is Data Leakage数据泄漏是数据科学家需要理解的最重要问题之一。 如果您不知道如何防止它,则会频繁出现泄漏,并且会以最微妙和危险的方式破坏您的模型。 具体而言,泄漏会导致模型看起来准确,当您开始使用模型做出决策,模型则变得非常不准确。 本教程将向您展示泄漏是什么以及如何避免泄漏...翻译 2018-09-22 13:48:11 · 3869 阅读 · 0 评论 -
机器学习初学者公众号下载资源汇总(一)
感谢黄海广博士的分享原创: 机器学习初学者 机器学习初学者 今天本站提供了大量的机器学习初学者下载资源,现在对已经公布的资源做下汇总,每个资源都会有一个百度云链接,并同时提供“自动回复”的功能(有时候百度云链接会失效,自动回复的链接可以更新,请使用“自动回复”功能)。请大家分享和转发,谢谢!下载资源:1. 吴恩达老师的机器学习和深度学习课程笔记打印版原文链接:htt...转载 2018-10-17 20:28:25 · 1078 阅读 · 0 评论 -
机器学习笔记(1):Introduction
目录1)welcome2)What is Machine Learning3)Supervised Learning4)Unsupervised Learning1)welcome第一个视频主要介绍了机器学习目前的案例,主要有:数据库挖掘、医疗记录、生物工程、无人直升机、手写识别、NLP、计算机视觉等。2)What is Machine Learning下面是...原创 2018-11-08 17:02:40 · 467 阅读 · 0 评论 -
机器学习笔记(2):单变量线性回归
目录1)Model representation2)Cost function3)Cost function intuition 14)Cost function intuition25)Gradient descent6)Gradient descent intuition7)Gradient descent for linear regression现在我们来开...原创 2018-11-14 11:14:26 · 436 阅读 · 0 评论 -
机器学习笔记(3):线性代数回顾
目录1)Matrices and vectors2)Addition and scalar multiplication3)Matrix-vector multiplication4)Matrix-matrix multiplication5)Matrix multiplication properties6)Inverse and transpose为了实现机器学习算...原创 2018-11-19 10:09:12 · 716 阅读 · 0 评论 -
Python之Numpy入门实战教程(2):进阶篇之线性代数
Numpy、Pandas、Matplotlib是Python的三个重要科学计算库,今天整理了Numpy的入门实战教程。NumPy是使用Python进行科学计算的基础库。 NumPy以强大的N维数组对象为中心,它还包含有用的线性代数,傅里叶变换和随机数函数。本文主要介绍Numpy库的重要应用:线性代数,线性代数在机器学习和深度学习中有着广泛的应用。强烈建议大家将本文中的程序运行一遍。这样能...原创 2019-01-25 21:33:44 · 1153 阅读 · 0 评论 -
Python之Numpy入门实战教程(1):基础篇
Numpy、Pandas、Matplotlib是Python的三个重要科学计算库,今天整理了Numpy的入门实战教程。NumPy是使用Python进行科学计算的基础库。 NumPy以强大的N维数组对象为中心,它还包含有用的线性代数,傅里叶变换和随机数函数。强烈建议大家将本文中的程序运行一遍。这样能加深对numpy库的使用。目录1.Creating arrays1)创建全零数组...原创 2019-01-22 14:02:28 · 1229 阅读 · 0 评论 -
10.Partial Dependence Plots
本教程是ML系列的一部分。 在此步骤中,您将学习如何创建和解释部分依赖图,这是从模型中提取洞察力的最有价值的方法之一。What Are Partial Dependence Plots有人抱怨机器学习模型是黑盒子。这些人会争辩说我们无法看到这些模型如何处理任何给定的数据集,因此我们既不能提取洞察力也不能确定模型的问题。总的来说,提出这种说法的人不熟悉部分依赖图。部分依赖图显示每个变量或...翻译 2018-09-07 16:06:45 · 10328 阅读 · 10 评论 -
9.XGBoost
本教程是机器学习系列的一部分。 在此步骤中,您将学习如何使用功能强大的xgboost库构建和优化模型。What is XGBoostXGBoost是处理标准表格数据的领先模型(您在Pandas DataFrames中存储的数据类型,而不是像图像和视频这样的更奇特的数据类型)。 XGBoost模型在许多Kaggle比赛中占据主导地位。为了达到峰值精度,XGBoost模型比Random Fo...翻译 2018-09-06 10:15:42 · 1971 阅读 · 0 评论 -
8.Using Categorical Data with One Hot Encoding
本教程是机器学习系列的一部分。 在此步骤中,您将了解“分类”变量是什么,以及处理此类数据的最常用方法。Introduction分类数据是仅采用有限数量值的数据。例如,如果人们回答一项关于他们拥有哪种品牌汽车的调查,结果将是明确的(因为答案将是本田,丰田,福特,无等等)。 答案属于一组固定的类别。如果您尝试将这些变量插入Python中的大多数机器学习模型而不首先“编码”它们,则会出现错误...翻译 2018-09-05 09:21:22 · 492 阅读 · 0 评论 -
3.Your First Machine Learning Model
Selecting Data for Modeling你的数据集有太多的变量包裹住你的头。你怎么能把这些压倒性的数据削减到你能理解的东西?我们首先使用我们的直觉选择一些变量。 后面的课程将向您展示自动确定变量优先级的统计技巧。要选择变量/列,我们需要查看数据集中所有列。 这是通过DataFrame的columns属性(下面的代码)完成的。[1]import pandas as p...翻译 2018-08-31 18:35:17 · 310 阅读 · 0 评论 -
7.Handling Missing Values
本教程是学习机器学习课程的第2部分。 本教程选择了1级完成的位置,因此如果您从1级完成练习,您将获得最大的收益。在此步骤中,您将学习三种处理缺失值的方法。 然后,您将学习如何比较这些方法在任何给定数据集上的有效性。Introduction数据可以通过多种方式以缺失值终止。 例如 两卧室房子不包括第三间卧室有多大的答案 接受调查的人可能会选择不分享收入Python...翻译 2018-09-04 09:43:50 · 642 阅读 · 0 评论 -
4.Model Validation
你已经建立了一个模型。 但它有多好?在本课程中,您将学习如何使用模型验证来衡量模型的质量。 测量模型质量是迭代改进模型的关键。What is Model Validation你几乎要评估你构建的每个模型。在大多数(尽管不是全部)应用中,模型质量的相关测量是预测准确性。换句话说,模型的预测是否接近实际发生的情况。在测量预测准确性时,许多人犯了一个大错误。他们使用他们的训练数据进行预测,并...翻译 2018-09-01 10:18:10 · 2252 阅读 · 0 评论 -
1.How Models work
Introduction我们首先概述机器学习模型如何工作以及如何使用它们。如果您之前已完成统计建模或机器学习,这可能会感觉很基础。别担心,我们很快就会建立强大的模型。本课程将为您构建以下场景的模型:你的堂兄已经花了数百万美元预测房地产。由于您对数据科学有兴趣,他愿意与您成为业务合作伙伴。他会提供资金,你会提供预测各种房屋价值的模型。你问你的堂兄他过去如何预测房地产价值。他说这只是直觉。但...翻译 2018-08-30 11:23:31 · 396 阅读 · 0 评论 -
11.Pipelines
本教程是ML系列的一部分。 在此步骤中,您将了解如何以及为何使用管道清理建模代码。What Are Pipelines管道是保持数据处理和建模代码有序的简单方法。 具体来说,管道捆绑了预处理和建模步骤,因此您可以像使用单个包一样使用整个捆绑包。许多数据科学家在没有管道的情况下将模型混合在一起,但是管道有一些重要的好处。 其中包括: 清洁代码:您无需在每个处理步骤中跟踪您的训练...翻译 2018-09-07 21:14:06 · 285 阅读 · 0 评论 -
12.Cross-Validation
本教程是ML系列的一部分。 在此步骤中,您将学习如何使用交叉验证来更好地衡量模型性能。What is Cross Validation机器学习是一个迭代过程。您将面临关于要使用的预测变量,要使用的模型类型,提供这些模型的参数等的选择。我们通过测量各种替代方案的模型质量,以数据驱动的方式做出这些选择。您已经学会使用train_test_split来分割数据,因此您可以测量测试数据的模型质...翻译 2018-09-07 21:51:01 · 271 阅读 · 0 评论 -
5.Underfitting and Overfitting
在这一步结束时,您将了解欠拟合和过拟合的概念,并且您将能够应用这些办法来使您的模型更准确。Experimenting With Different Models现在您已经有了一种可靠的方法来测量模型精度,您可以尝试使用其他模型,并查看哪种模型可以提供最佳预测。 但是你对模型有什么选择?您可以在scikit-learn的文档中看到决策树模型有很多选项(比您长期想要或需要的更多)。 最重要的...翻译 2018-09-02 10:40:41 · 964 阅读 · 0 评论 -
6.Random Forests
Introduction决策树会让您做出艰难的决定。 有很多树叶的深树将会过拟合,因为每个预测都来自其叶子上只有少数房屋的历史数据。 但是叶子很少的浅树会表现不佳,因为它无法捕获原始数据中的许多区别。即使在今天,最成熟的建模技术也面临着过拟合和欠拟合之间的这种紧张关系。 但是,许多模型都有聪明的想法,可以带来更好的性能。 我们将以随机森林为例。随机森林使用许多树,并通过平均每个组树的预测来...翻译 2018-09-02 11:14:43 · 223 阅读 · 0 评论 -
重磅 | 完备的 AI 学习路线,最详细的资源整理!
本文转自微信公众号:Datawhale(强烈推荐)原创:AIUnionDatawhale 今天【导读】本文由知名开源平台,AI技术平台以及领域专家:Datawhale,ApacheCN,AI有道和黄海广博士联合整理贡献,内容涵盖AI入门基础知识、数据分析\挖掘、机器学习、深度学习、强化学习、前沿Paper和五大AI理论应用领域:自然语言处理,计算机视觉,推荐系统,风控模型和知识...转载 2019-04-28 15:25:05 · 2618 阅读 · 1 评论